Lecture Notes in Networks and Systems 415

Jagdev Singh - George A. Anastassiou -
Dumitru Baleanu - Carlo Cattani -
Devendra Kumar Editors

Advances in
Mathematical
Modelling,
Applied Analysis
and Computation

Proceedings of ICMMAAC 2021

@ Springer



Lecture Notes in Networks and Systems

Volume 415

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences,
Warsaw, Poland

Advisory Editors

Fernando Gomide, Department of Computer Engineering and Automation—DCA,
School of Electrical and Computer Engineering—FEEC, University of Campinas—
UNICAMP, Sao Paulo, Brazil

Okyay Kaynak, Department of Electrical and Electronic Engineering,
Bogazici University, Istanbul, Turkey

Derong Liu, Department of Electrical and Computer Engineering, University
of Illinois at Chicago, Chicago, USA
Institute of Automation, Chinese Academy of Sciences, Beijing, China

Witold Pedrycz, Department of Electrical and Computer Engineering, University of
Alberta, Alberta, Canada
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Marios M. Polycarpou, Department of Electrical and Computer Engineering,
KIOS Research Center for Intelligent Systems and Networks, University of Cyprus,
Nicosia, Cyprus

Imre J. Rudas, Obuda University, Budapest, Hungary

Jun Wang, Department of Computer Science, City University of Hong Kong,
Kowloon, Hong Kong



The series “Lecture Notes in Networks and Systems” publishes the latest
developments in Networks and Systems—quickly, informally and with high quality.
Original research reported in proceedings and post-proceedings represents the core
of LNNS.

Volumes published in LNNS embrace all aspects and subfields of, as well as new
challenges in, Networks and Systems.

The series contains proceedings and edited volumes in systems and networks,
spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor
Networks, Control Systems, Energy Systems, Automotive Systems, Biological
Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems,
Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems,
Robotics, Social Systems, Economic Systems and other. Of particular value to both
the contributors and the readership are the short publication timeframe and
the world-wide distribution and exposure which enable both a wide and rapid
dissemination of research output.

The series covers the theory, applications, and perspectives on the state of the art
and future developments relevant to systems and networks, decision making, control,
complex processes and related areas, as embedded in the fields of interdisciplinary
and applied sciences, engineering, computer science, physics, economics, social, and
life sciences, as well as the paradigms and methodologies behind them.

Indexed by SCOPUS, INSPEC, WTI Frankfurt eG, zbMATH, SCImago.
All books published in the series are submitted for consideration in Web of Science.

For proposals from Asia please contact Aninda Bose (aninda.bose @springer.com).


mailto:aninda.bose@springer.com

Jagdev Singh - George A. Anastassiou -
Dumitru Baleanu - Carlo Cattani - Devendra Kumar
Editors

Advances in Mathematical
Modelling, Applied Analysis
and Computation

Proceedings of ICMMAAC 2021

@ Springer



Editors

Jagdev Singh

Department of Mathematics
JECRC University

Jaipur, India

Dumitru Baleanu
Department of Mathematics
Cankaya University
Ankara, Turkey

George A. Anastassiou
Department of Mathematics
University of Memphis
Tennessee, TN, USA

Carlo Cattani

Engineering School, DEIM
University of Tuscia
Viterbo, Italy

Devendra Kumar
Department of Mathematics
University of Rajasthan
Jaipur, India

ISSN 2367-3370 ISSN 2367-3389 (electronic)
Lecture Notes in Networks and Systems
ISBN 978-981-19-0178-2 ISBN 978-981-19-0179-9 (eBook)

https://doi.org/10.1007/978-981-19-0179-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature

Singapore Pte Ltd. 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


https://doi.org/10.1007/978-981-19-0179-9

Preface

This book is based around the 4th International Conference on “Mathematical
Modelling, Applied Analysis and Computation ICMMAAC 21)” held in JECRC
University, Jaipur on 5-7 August 2021. The book contains several recent advanced
and important topics in mathematical modelling, applicable analysis and numerical
simulations having uses in science, engineering and finance. The book is very useful
for the graduate and post-graduate students, researchers and educators working in
different directions of research in applied mathematics and related fields. The general
readers interested in mathematical theories and techniques having practical applica-
tions in solving real-world problems should also find the book very interesting and
useful. The book contains 36 chapters which are organized as follows:

Chapter “A Collection of Hilfer Fractional Opial Inequalities” presents a collec-
tion of Hilfer fractional left and right side Opial type inequalities. These cover
forward, reverse and extreme cases, and contain one, two and several functions
of distinct non-integer orders at different powers. The estimates are very general
covering several distinct settings.

Chapter “On a Non-linear Diffusion Model of Wood Impregnation: Analysis,
Approximate Solutions, and Experiments with Relaxing Boundary Conditions”
establishes approximate integral-balance solutions of nonlinear diffusion model
for wood impregnation by methacrylate in two cases, namely, Dirichlet boundary
condition considering instantaneous saturation of the wood surface contacting with
the liquid bath and relaxing Dirichlet boundary conditions accounting the fact that
instantaneous saturation is unphysical and takes some time to be developed.

Chapter  “Algorithmic  Complexity-Based Fractional-Order Derivatives
in Computational Biology” presents a novel mathematical informed framework
and multi-staged integrative technique concerning algorithmic complexity. This
chapter aims at investigating a robust and accurate model reliant on the mixture of
fractional-order derivative and artificial neural network for the diagnostic and
differentiability predictive purposes for the disease which may reveal several and
transient biological characteristic. Another objective of this chapter is benefitting
from the concept of algorithmic complexity to attain the non-integer order derivative
with the least complexity in order that it would be possible to achieve the optimized
solution.
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Chapter “Case Study of Non-singular Kernel Model for MHD Boundary Layer
Flow of a Rate Type Fluid over an Oscillating Plate” presents the MHD boundary
layer flow of rate type fluid over an oscillating inclined infinite plate along with
Newtonian heating and slip at the boundary. The model is established by applying
the Atangana-Baleanu time-fractional derivative operator. Temperature and velocity
fields for the fractional-order model are calculated. The physical significance of the
parameters like relaxation time, fractional-order parameter, Grashof number, and
inclination of the plate is investigated and their control on the velocity of the fluid is
examined graphically.

Chapter “Multilayer Perceptron Artificial Neural Network Approach to Solve
Sixth-Order Two-Point Boundary Value Problems” presents a multilayer percep-
tron artificial neural network technique for solving the sixth-order boundary value
problems that arise in various branches of engineering and physics such as hydrody-
namics, fluid dynamics, astrophysics, beam theory and so on. The obtained solutions
of these boundary value problems by applied method are optimal as compared to
other existing approximation techniques. In order to decide the performance of the
proposed technique some models are analysed. The numerical outcomes show that
the suggested strategy is very effective for higher order boundary value problems
and required low memory space and less computational time.

Chapter “Wavelet Transform on Generalized Quotient Spaces and Its Appli-
cations” presents the theory of generalized quotients which is a generalization
of Schwartz distributions. The general construction of generalized quotients is
discussed, which is employed to several function spaces in order to attain various
generalized quotient spaces. The wavelet transform is extended to these spaces to
obtain some generalized outcomes. The idea of convolution related to wavelet is
employed to obtain operational properties for quotient of sequences. The wavelet
transform of periodic quotient of sequences is expressed and a uniqueness theorem
is defined for the wavelet transform of analytic functions. Some fundamental concepts
of the theory of generalized quotients are discussed and then some of its applications
such as extending the wavelet transform on a space of generalized quotients on the
torus are explained.

Chapter “Certain Image Formulae of the Incomplete I-Function Under
the Conformable and Pathway Fractional Integral and Derivative Operators”
studies several interesting image formulae of the incomplete I-function under the
conformable and pathway fractional operators. Since both the incomplete I-function
and the conformable fractional operators are very general among special functions as
well as fractional integral and derivative operators, the principal outcomes discussed
in this chapter can give a number of specific identities, some of which are explicitly
shown in the corollaries.

Chapter “Explicit Exact Solutions and Conservation Laws of Modified Alpha
Equation” investigates the invariant solutions of generalized modified alpha equation
which are derived by utilizing the Lie classical symmetry scheme. The obtained
solutions are in terms of trigonometric functions and hyperbolic functions. This
equation can be used in solidifying and nucleation problem. The conservation laws
are obtained by employing the multiplier approach. The graphical representations
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are also demonstrated for some of the obtained solutions. Some new solutions of
those equations are found that have been considered earlier in literature, as well as
some of the previous solutions can also be recovered by considering special values.

Chapter “Some Approximation Results on Durrmeyer Modification of Gener-
alized Szdsz—Mirakjan Operators” deals with the approximation features of the
summation-integral-type operators defined by Mishra et al. It consists of the local
outcomes and convergence theorem of the defined operators. The asymptotic nature
of the operators and the quantitative means of Voronovskaja-type theorem are
presented. The Griiss Voronovskaja-type theorem is discussed. To support the
approximation results of the operators, the graphical representation is presented.

Chapter “Fuzzy Approach to Solve General De-Novo Programming Problem”
introduces a modified fuzzy approach to solve GDNPP by means of reflection of
decision-maker’s choice. It is observed that flexibility in decision-maker’s choice
to some extent could be studied in multi-objective linear programming problem
utilizing meta-goal programming technique. This flexibility in decision process can
also be effectively considered by applying fuzzy scheme for solving GDNPP, which
is obtained by introducing novel constraints as per requirement of the problem. The
proposed technique of solution has been shown by a numerical illustration. The
obtained solutions have been compared with those of other existing techniques of
solving GDNPP.

Chapter “Comparative Study of Eight Classification Models for Diagnosis
and Prediction of Breast Cancer” deals with eight models such as Logistic Regres-
sion, K-Nearest Neighbourhood, Decision Tree, Random Forest, Artificial Neural
Network, Gaussian Naive Bayes, Support Vector Machine and AdaBoost classifier
which are utilized for predicting two classes, i.e. benign and malignant. To select the
best fit classification model for prediction, a confusion matrix is used for evaluating
the performance of each model. Further, parameters, for example, precision, accu-
racy, recall, specificity, F-measure and Matthews correlation coefficient, are investi-
gated for each model. The Wisconsin breast cancer diagnosis dataset and Coimbra
breast cancer dataset are applied for experimental outcomes.

Chapter “Mathematical Model for Demonetization” investigates a demonetization
effect on a population by using a compartmental mathematical model. Mathematical
analysis of the model presents that there is an existence of demonetization—free
equilibrium and demonetization existence equilibrium. The numerical results of the
model are obtained and the outcomes reveal that demonetization effect persist in the
system.

Chapter “An Inflationary Demand Scheme with Pareto Deterioration in Two Ware-
houses” deals with a two storage inventory model (one of them is Own Warehouse
(OW) and another is Rented Warehouse (RW)) with exponentially time-varying
demand considering partial backlogging. The capacity of own warehouse is fixed
(U units), to store more units than the limited range of OW, the supplier has to
rent another warehouse (RW) at higher holding cost. Two warehouse policies with
linear holding cost and Pareto—type decay in an inflationary environment are studied.
The sensitivity investigation has been investigated to show the effects of diverse
parameters of the inventory system.
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Chapter “Exact Solitary Wave Solutions of the (3+1)-Dimensional Generalised
Kadomtsev-Petviashvili Benjamin-Bona-Mahony Equation” studies the (3+1)-
dimensional generalized Kadomtsev-Petviashvili Benjamin-Bona-Mahony equa-
tion. By applying the modified hyperbolic function expansion method, the exact soli-
tary wave solutions of the nonlinear partial differential equation have been derived.
The required basic information for the technique of modified hyperbolic expan-
sion has been provided. Two numerical examples have been demonstrated and the
exact solutions obtained are described with the help of two—dimensional and three—
dimensional graphs.

Chapter “Effect of Oblique Magnetic and Electric Fields on the Kelvin-Helmholtz
Instability at the Interface Between Porous and Fluid Layers” deals with the effect
of inclined magnetic and electric field on the growth rate of the Kelvin-Helmholtz
instability of a flow in porous layer. The base flow is considered to be fully developed
and the linear theories along with normal modes are applied to understand the stability
of the flow over the interface between the fluid saturated porous layer and clear
fluid layer of large extent. The effect of inclined magnetic and electric fields on the
growth rate of instability is examined in terms of non-dimensional parameters. The
numerical and graphical outcomes demonstrated and validated for wide range of
non-dimensional parameters.

Chapter “Heat Transfer for MHD Flow in an Inclined Channel with Heat Gener-
ation/Absorption” deals with the motion of an incompressible viscous fluid in an
inclined channel. A uniform magnetic field is employed normal to the channel,
considering heat absorption, heat generation and viscous dissipation into account.
The non-dimensional partial differential equations are transformed into ordinary
differential equations (ODEs) and the perturbation technique is applied for solving
ODEs. The velocity and temperature properties have been analysed through graphs.

Chapter “Volterra Equation with Constant Fractional Order and Variable Order
Fractal Dimension” studies a general Volterra equation with the new differential
and integral operators. The condition is presented under which the uniqueness and
existence of the exact solutions can be obtained for three cases involving power
law, exponential decay law and the generalized Mittag-Leffler function. Numerical
solutions and error analysis are presented for each case.

Chapter “On the Parabolic Instability Region for Kuo Problem” demonstrates Kuo
problem which deals with incompressible, inviscid, parallel zonal flows. For this Kuo
problem, a parabolic instability region without any restriction which intersects with
Howard semi-circle under some condition is derived. A novel upper bound for the
growth rate of an unstable mode is obtained.

Chapter “Font Design Through RQT Bézier Curve Using Shape Parameters”
deals with RQT Bézier curve utilizing two shape parameters. These new curves are
more adaptable due to the existence of shape parameters and geometric character-
istics. To confirm whether the studied curve satisfied the convex hull characteristic
or not, limitations on shape, weight and declared end-pointed curvatures have been
used. This curve is applied for smooth curve compositions by generating piecewise
rational trigonometric curves that are adjacent in parametric and geometric Hermite
continuity criteria.
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Chapter “Effect of Partial Slip on Peristaltic Transport of MHD-Carreau Fluid
in a Flexible Channel with Non-uniform Heat Source and Sink” studies the effect
of magnetic field, partial slip flow and irregular heat generation and absorption
of Carreau liquid in peristaltic movement through flexible channel. By using suit-
able non—dimensional parameters the governing equations are reduced to standard
nonlinear partial differential equations. By employing multi-step differential transfor-
mation method solutions of emerging equations are obtained. The role of influential
factors on velocity, concentration and temperature is demonstrated via graphs.

Chapter “Invariant Preserving Schemes for Multi-symplectic Integrator of Two
Long Waves’ Interactions” reports the idea of discrete conservation of symplecticity
to discretization’s for two long wave’s interactions. This characteristic is endemic
and it is explained that it also leads to exact discrete conservation of momentum and
energy for propagation two long wave’s interactions. Multi-symplectic integrators are
examined for propagation two long waves’ interactions and analysed the conservation
aspect for multi-symplectic integrator. The numerical simulations are also shown.

Chapter “Study of Effect of Overlapping Stenosis on Flow Field Considering
Non-Newtonian Reiner Rivlin Blood Flow in Artery” presents the impact of over-
lapping stenosis associate to symmetric stenosis for distinct shape parameters on
parameters of flow field. By considering Reiner—Rivlin stress and strain constitutive
relations appropriate for blood rheology the governing conservation equations are
derived. To reveal shear thinning, shear thickening and dilatancy effect, the suitability
of generalized Reiner—Rivlin constitutive relation is reported from the literature. The
solution for flow field is founded for steady axi-symmetric case for both overlapping
stenosis and axially symmetric for several shape parameters. To discuss the effect of
overlapping stenosis associate to symmetric stenosis the flow fields for symmetric
and overlapping stenosis are compared.

Chapter “Pathway Fractional Integral Formulae Involving Extended Bessel-Mait-
land Function in the Kernel” deals with two composition formulae of pathway frac-
tional integral operators associated with altered modifications of the Bessel-Maitland
function. Pertinent connections of certain special cases of key results with known
outcomes have been investigated.

Chapter “Analytical Approximate Approach to the Helmholtz-Duffing Oscillator”
studies a new analytical approximation for the period and periodic solutions for the
Helmbholtz-Duffing oscillator. The key aim of this work is to approximate the integra-
tion in exact analytical period of equation by applying a well-known quadrature rules.
Comparison of the outcomes attained employing this scheme with the exact one and
existing outcomes shows simplicity, accuracy and efficiency of the proposed method
for the whole range of initial amplitudes and the equation parameter in a variety
of cases. The approach can be easily modified to other existing strongly nonlinear
oscillators.

Chapter “Haar Wavelet Series Method for Solving Simultaneous Proportional
Delay Differential Equations” reports a novel numerical technique to find the approx-
imate solution of simultaneous proportional delay differential equations (SPDDEs).
To transform the SPDDEs into a system of algebraic matrix equations with unknown
coefficients matrices, the discussed method uses delayed Haar wavelet series and
collocation points. By applying suitable solver, the values of these unknown row
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matrices can be found. By applying these coefficients the solution in forms of
collocated Haar wavelet series is found.

Chapter “Fractional Reaction—DiffusionModel: An Efficient Computational
Technique for Nonlinear Time-Fractional Schnakenberg Model” studies the
g-homotopy analysis transform method (q-HATM) to obtain the solutions for the
nonlinear fractional-order reaction-diffusion systems, for example, the fractional
Schnakenberg model. For modelling of morphogen in developmental biology, study
of these models is well known. In this chapter, study of Schnakenberg models is
considered with exciting results. The obtained results show that the studied tech-
nique is very interesting and resolves the complex nonlinear issues that arise in the
field of science and technology.

Chapter “Existence of Salvage Value in a Memory Dependent EOQ Model
in Absence of Deteriorating Items” deals with an inventory model by considering the
effect of the past experience. By applying concept of fractional calculus, the inclu-
sion of memory effect in the inventory system has been investigated. The existence
of salvage value in the memory dependent inventory system in absence of deterio-
rating items has been studied. At last, sensitivity analysis is discussed to analyse the
crucial parameters of the system for the market studies so that it would be given care
seriously.

Chapter “A Fuzzy Decomposable Approach for Posfust Reliability Evaluation
of a Repairable Substation Automation System” represents a new technique to study
the posfust reliability of a substation automated system. The fuzzy failure and fuzzy
repair rates in the aspect of possibility have been discussed. In this scheme, a decom-
position technique is used to a normal and convex fuzzy set. The complete process
is compared with the existing method and applied method with the aid of numerical
example.

Chapter “Solution of Fingering Phenomenon Arising in Porous Media in Hori-
zontal Direction by Combination of Elzaki Transform and Adomian Decomposition
Method” studies the solution of fingering aspect appearing in fluid flow via porous
media in horizontal direction. This idea has a crucial role in oil recovery process.
Mathematical construction of the fingering aspect has been obtained and it is repre-
sented by nonlinear partial differential equation. To compute the solution for the
studied model, Elzaki Adomian decomposition scheme has been applied. The applied
technique provides the solution in a convergent series. To analyse the accuracy of
the discussed method, the applied technique is compared with variational iteration
method.

Chapter “Numerical Study of Melting Impact on MHD Non-Newtonian Casson
Fluid Flow Ran on a Stretching Sheet in a Porous Medium with Radiation and Dissi-
pation Effect” reports the aspects of melting heat transference in the porous medium
of MHD Casson fluid affected by thermal radiation and viscous dissipation in addi-
tion with heat source/sink effect. The nonlinear problem is handled by using the
Runge-Kutta-Fehlberg method by reducing the governing equations into ordinary
differential equations. By utilizing MATLAB software along with shooting method
the graphical representation has been shown. The effect of Nusselt number and skin-
friction coefficient has been illustrated. The results of the present study are related
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with the convenient works in particular conditions and more contracts have been
identified.

Chapter “Impact of Hall Current and Rotation on Unsteady MHD Oscillatory
Dusty Fluid Flow Through Horizontal Porous Plates” studies the effect of Hall current
on unsteady MHD oscillatory dusty fluid flow through the horizontal rotating porous
plates. The momentum and energy equations on the basis of certain restrictions
have been obtained. The governing equations have been simplified and solved by
analytical approach. For velocity and temperature, the closed analytical solutions
have been found. To reveal the key aspects of several physical parameters on the
fluid flow, the numerical simulations are shown graphically. The outcomes found in
this chapter are compared and authenticated with the existing results in the literature.

Chapter “Study of Aligned MHD Casson Fluid Past a Shrinking Sheet
with Viscous Dissipation” studies the effect of viscous dissipation on aligned MHD
flow in a Casson fluid with heat and flow transfer over shrinking sheet. The effects of
several parameters have been investigated on different profiles. By employing simi-
larity transformations the governing partial differential equations are converted to
ordinary differential equations. By applying Runge-Kutta-Fehlberg technique with
the aid of shooting scheme, the scientific outcomes have been discussed.

Chapter “Spin Coating of Non-Newtonian Nanofluid with Silver and Copper
as Nanoparticle” investigates the characteristics of the flow and film thickness vari-
ation of non-Newtonian nanofluid during spin coating process. In case of non-
newtonian fluid the viscosity is not a constant term. In case of non-Newtonian fluid,
the viscosity and solvent diffusivity are dependent on polymer concentration. The
silver and copper are taken as a nanoparticle and sodium alginate is taken as a non-
Newtonian base fluid. The nature of the film thickness for the distinct parameters,
for example, initial film thickness, angular velocity of the rotating disc and volume
fraction of the nanoparticles has been studied.

Chapter “Analysis of Soret and Dufour Effect on MHD Fluid Flow Over a Slanted
Stretching Sheet with Chemical Reaction, Heat Source and Radiation” investigates
the MHD laminar flow with heat flux, mass flux and magnetic flux, buoyancy ratio,
thermal conduction, and radiation with convective boundary condition for suction and
injection of an electromagnetic fluid. The similarity transformations are employed to
get the coupled ODEs from coupled partial differential equation and then these ODEs
are handled by using RK-4 scheme. The impacts of different physical quantities are
demonstrated numerically graphically on different profiles.

Chapter “Entropy Generation in Fourth-Grade Fluid Flow with Variable Thermal
Conductivity” presents a numerical examination of thermo-fluidic configuration
confronting entropy generation in the fourth grade fluid flow via a parallel plate
channel with temperature-dependent thermal conductivity. The problem is formu-
lated in terms of boundary value problem and examined by using RK-4-order scheme
along with shooting technique. Thermodynamic irreversibility analysis is studied
through quantification of entropy generation and Bejan numbers.

Chapter “Solution of Nonlinear Fractional Differential Equation Using New Inte-
gral Transform Method” presents the solution of fractional-order nonlinear partial
differential equations by utilizing the Elzaki decomposition technique. The method
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is a powerful scheme for solving fractional differential equation. Some numerical
cases are illustrated to examine the efficiency of the proposed scheme.

The editors are thankful to the contributors for submitting their valuable research
articles. The editors are grateful to the reviewers for their sincere efforts in evaluating
the papers in a timely manner. We are also thankful to our colleagues and friends for
their constant support and help during execution of task for bringing out this volume.

Jaipur, India Jagdev Singh
Tennessee, USA George A. Anastassiou
Ankara, Turkey Dumitru Baleanu
Viterbo, Italy Carlo Cattani
Jaipur, India Devendra Kumar

September 2022
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A Collection of Hilfer Fractional Opial )
Inequalities L

George A. Anastassiou

Abstract Here we present a detailed collection of the Hilfer fractional left and
right side Opial-type inequalities. These cover forward, reverse, and extreme cases
and involve one, two, and several functions of various non-integer orders at various
powers. Our estimates are very general covering many different settings.

Keywords Hilfer fractional derivative + Opial inequality - Fractional integral
inequalities

1 Background

The original Opial inequality [16] (see also [15], p. 114) states the following:
Theorem 1 If f € C' ([0, a]) with f (0) = f (a) = 0and f (x) > 00n (0, a), then

a|f(X)f’(X)|dxsg a(f’(x))zdx. 1)
4
0 0

The constant % is the best possible constant.

This result for classical derivatives has been generalized in several directions (see,
for instance, [1, 2]).

The author was the first to extend (1) for fractional derivatives, see [3], in 2000.
For a complete treatment, see his monograph [11] of 2009.

Here we present a complete collection of left and right side fractional Opial-type
inequalities involving the left and right side Hilfer fractional derivatives.

Let —00 < a < b < 00, the left and right Riemann-Liouville fractional integrals
of order « € C (R («) > 0) are defined by
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2 G. A. Anastassiou
(I8 f) () = L /x (x —0)*" f()dt, )
I' (@) Ja
x > a; where I" stands for the gamma function, and
1 b
(I f) @) = m/x t—x)*"' f @, 3)

x < b.
The Riemann-Liouville left and right fractional derivatives of order o € C
(R (@) = 0) are defined by

d " n—o 1 d ! * n—o—
(A2, y) (x) = (E) (15%y) (x) = Fo—a) (_x> /a x—1 Yy (t)dt

“4)
(n = [R (@)1, [-] means ceilling of the number; x > a)
o n d ! n—o
(A7) (x) = (=) <E> (L,="y) (x) =
(_l)n d " b n—a—1
To—o (E) /X (t—x) y@)dt (5)

(n =R (@)]; x < b), respectively; where R («) is the real part of «.
In particular, when « = n € Z,, then

(A),y) () = (A)_y) ) =y (x):
(A% y)(x) =y™ (x), and (AL_y) (x) = (—D"y" (x), neN,

see [17].
We need to mention the left and right side Hilfer fractional derivatives.

Definition 1 ([18]) Let v>0, v ¢ N, [v] =n €N, f € C ([a, b]). The Hilfer
fractional derivative (left-sided and right-sided) ¥ D:f(b_) f of order v and type
0 < B <1 are defined by

V. n—v d " — n—v
Hp2P () = 17! ><5) 1P o, (6)

and

d
Hp B _ P (_ 4
b f (X) b— dx

) 1P £ 7

X € [a, b].
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We make

Remark 1 When 8 = 0, we get the Riemann-Liouville fractional derivatives, while
when B = 1, we obtain the Caputo-type fractional derivatives as follows (with f €
C" ([a, bD):

1 X
DLyt ) = s [ =0 0w, ®)

and

1}1
Dy f ()= —— ( ) f(r )" @) dt, ©)

Yx €la,b].
We define§ := v+ B (n —v). Wenoticethatn — 1 <v<v+B8n—v) <v+
n — v = n, hence [§] = n. We can easily write that

Dyl f () = I AL f (), (10)
and
DpPf ) =120 A)_f (x), (11)
x € la, b].
We h that
s 5 d\" a-pu-v
Ay f(x) = (d_x) I,y fx), (12)
and
5 _(_ 4\ ja-pa—v
Ay_f(x) = 7 I,~ f X, (13)
x € [a, b].

In particular, when 0 < v < land 0 < 8 < 1; § = v + B (1 — v), we have that

Hp2l f (x) = / (x =0’ AL f (1) dt, (14)

and

MDY ) = s / (=P AL (@, (15)

X € [a, b].
Next we mention some Hilfer fractional representation formulae:

Theorem 2 ([I12])Letv >0,v ¢ N, [v]=n0< B8 <1, f € C([a, b]) la,b] C
R;andset§ = v + B (n — v). Assume further that Aa+f e C([a, b)) : Aa+jf (a) =
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0,forj=1,...,n Letalsoy > 0:[y] =m,withe =y + B (m — y), and assume
thatv > y and § > €. Then

DLW = s [ G0 M e e

x € [a, b]; furthermore, ]D)Zf f € AC (la, b)) (absolutely continuous functions) if
v—y >1Land "DP f € C([a. b)) ifv—y € (0, 1).

‘We also mention

Theorem 3 ([I12])Letv > 0,v¢ N, [v]=n0<pB<1; f € C(la, b]) la, b] C
R;andset§ = v+ B (n —v). AssumefurtherthatA5 f e C(a,b]): A ]f b) =
0, forj=1,...,n Letalsoy >0: [yl =m,withe =y + (m —y), andassume
thatv > y andS > ¢g. Then

1 b )
DY) = s [ = M p e an)

x € la, b]; furthermore, HID)Zf}f € AC (la,b]) if v—y >1, and H]D)fo €
C([a,b]) ifv—y €(0,1).
‘We continue with two extreme cases.

Theorem 4 ([12]) When 8 = 0, Theorems 2 and 3 are still valid. That is

AL f @) =17 AL f (), (18)

and
A_fx)=1""A_f(x), (19)

all x € [a, b], respectively.

The case of B = 1 collapses to Caputo-type fractional derivatives and related
representation formulae (see [12]), already treated extensively in [11].

So, here we treat only 0 < 8 < 1 case.

To motivate our work, we mention the Opial-type left side Hilfer fractional
inequality:

Theorem 5 ([12]) All as in TheoremZ 0<pB <1 Letalsop,qg > 1:

and assume thatv —y > = . Then

1,1
Lyl
P g

/ax \HDfo )| D2 £ ) aw <
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27 (x — a)(”_”)Jr(%‘%) (/
h+2)]7

Feo—-y[po—y—D+D(po—-—y-

2
vl r )’ dw) ,
(20)

Vx €la,b].
The corresponding Opial-type right side Hilfer fractional inequality follows:
Theorem 6 ([12]) All as in Theorem 3,0 < p < 1. Letalso p,q > 1: 5 + . =1,

and assume thatv —y > = . Then

b
/x
1 1

IS ()

FO-[Ee-y=D+D(pE-y-1+2)

"D f <w>} !”szf (w)} dw <

1’ (/xb

q
;ffwwﬁqdw> ,

2y

Vxe€la,b].

2 Main Results

Next comes a complete collection of left and right side fractional Opial-type inequal-
ities engaging the left and right side Hilfer fractional derivatives.

2.1 Results Involving One Function

We start with a left side one:
Theorem 7 Here all as in Theorem 2,0 < B < 1. Then

b Hy.p — )" s )
/a D¢ £ | P22 £ o < & Fos T (|pits] ) e
x € la,b].
Proof Similar to Proposition 25.1, [4], p. 547.
The right side one follows:
Theorem 8 Here all as in Theorem 3, 0 < 8 < 1. Then

X)V7y+1

e D

/ 2 £ )| [B 1 (] <
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x € la,b].
Proof Similar to (22).
‘We continue with converse results:

Theorem 9 All as in Theorem 2, 0 < B < 1. Suppose that HID)Z’ff (w) # 0 and of
fixed sign over [a, b). Let p, q such that0 < p < 1 and % + é = 1. Then

[

274 (x —a) »+(5-4) (/
T
To-—-y[e-y=D+D(pE-y-1D+2)]”

DL f )| 7D f )| dw =

2
oL f ) dw)

(24)
Vxé€la,b].

Proof Similar to Theorem 25.3, [4], p. 547.

Theorem 10 All as in Theorem 3, 0 < 8 < 1. Suppose that HDfo (w) # 0 and
of fixed sign over [a, b]. Let p, q such that 0 < p < | and % + é = 1. Then

/-b
v (L1 2
N »+(5-1) b fo(w))qdwy

(25)

D ||y f ()| dw =

_1
277 (b—

T/
Fro—-y[pe-y-D+D(pu-—y—-1)+2)]r (
Vx é€la,b].

Proof Similar to (24).

‘We continue with

Theorem 11 All as in Theorem 2, 0 < B < 1. Additionally, let k > 0 : [k] = my,
with &1 = k + B (m; — k), and assume § > ¢. Assume further that v — k > 1 and
y=k+1.Letp,q>1:%+$=1.Then

/ ‘ HDkﬂf ( )H(HDZ-ff)(w)‘dwg

2(pv=k=D+1)
»

) ("ot ) (w)\qdw)z, (26)

(x —a) (/
20—k (pv—k =1+ 17 \a

Vxé€la,b].
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Proof Similar to Theorem 25.4, [4], p. 549.

Theorem 12 All as in Theorem 3, and the rest as in Theorem 11. Then

/xb (552 7) | ("D ) ] aw =

2pr—k=D+1) 2

|(vop 1) [ aw)’ e

P (f
2T W=k (pw—k—1+1)7r \x
Vxé€la,b].
Proof Similar to (26).

We continue with extreme cases:

Theorem 13 All as in Theorem 11, with p = 1, g = 0o. Then

G

2
(x —a)**P (H oDyt f H )
00, (a,x)

, 28
20 (v —k+1))2 (28)
Vxé€la,b].
Proof Similar to Proposition 25.2, [4], p. 551.
Theorem 14 All as in Theorem 12; p = 1, g = 0c. Then
b k k+1
f ("Dk? ) | | ("D ) (o <
2
(b —xyh (HH]D)“’ﬁ f )
b- 00, (x,b)
, (29)

2(C' (v —k+1))?
Yx €la,b].
Proof Similar to (28).
We continue with reverse inequalities:

Theorem 15 All as in Theorem 11. Here (H]D)Z’f f) (w) # 0 and of fixed sign over
[a, b]; furthermore, let p,q : 0 < p < 1 and % + é = 1. Then
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r

2p—k=D+1)

DL f ()| PO f ()| dw =

("3t 7)) dw)j .00

(x—a v x
2T W=y (pw—k=1)+1)7 ([
Yx€la,b].
Proof Similar to Theorem 25.5, [4], p. 553.

Theorem 16 All as in Theorem 12. Here (H]D)Zl3 f) (w) # 0 and of fixed sign over
[a, b]; furthermore, let p,q : 0 < p < 1 and i + é = 1. Then

i

2p—k=D+1)

"D f )| DY ()| =

Qe

’ (") (w)("dw) . GD

b—x) 7 </
2T W=k (pw—k—D+ D7\
Vxé€la,b].
Proof Similar to (30).
Next we present
Theorem 17 Letv >0, v ¢ N, [Vl =n 0=<p < 1; f € C([a, b]); and set § =
v+ B (n — v). Assume further that Ag+f € C ([a, b)) : Az:_]f (a)=0j=1,..,
n.Letalsoy; > 0: [y;] =mi;v—1y; > 1, withe; = y; + B (m; — y;), and assume

thatv > y;and§ > ¢;,i =1, ..., 1.
Herea < x < b; q1 (x), q2 (x) continuous functions on [a, b] such that q; (x) >

i=1

i
0, g2(x) >0 on [a,b], and r; >0:> r;=r. Let S1, 81 >1:$+l,=1 and

S

sz,s§>l:é+é=1,andp>sz.

Denote by
0 (x) := ( / (@1 ()" dw) ! (32)
and N
0, (x) = ( / (@2 (@) 7 dw) :, (33)
pP— 5
o = .
Ps2

Then
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X l T
/ q1 (w) 1_[ ‘HDZZLﬂf (w)‘ do < 01 (x) 02 (x)
a i=1

H{ Fi O—rig r‘o} (34)
LT o= o —n—1+0)

i=1

( )(il(u—y,-—l)r,-+ar+ﬁ) ¥ » r
X —a)N= P
l (/ a(w) "D} 1 (@) dw) ,

((21: w—vy - l)ris1> +rsio + 1>A1
i=1

Vxé€la,b].
Proof Similar to Theorem 26.1, p. 567 of [4].

Next we also present

Theorem 18 Letv >0, v ¢ N, [Vl =n, 0< 8 < 1; f € C(la, b]); and set § =
v+ B (n — v). Assume further that Ag_f € C ([a, b)) : Ai:’f b)=0,j=1,..,
n.Letalsoy; > 0: [y;] =mi;v—y; > L, withe; = y; + B (m; — y;), and assume
thatv > y;and § > ¢;,i =1, ..., 1.

Herea < x < b; q1 (x), g2 (x) continuous functions on [a, b] such that q, (x) >

i
0, ¢2(x) >0 on [a,b], and r; >0: Y ri=r. Let 51,5] > 1 :%—I—Yl,:l and
i=1 ) o
$2,8, > 1: $+Si/=1,andp>sz.
2

Denote by
b 5
Q) (x) = ( f (q1 (@) dw) (35)
and .,
— b % %
0, (x) = </ (q2 (w)) 7 dw) ) (36)
pP—5
o= —7.
ps2
Then

b ! " o o
f a1 ) [0} f @) do = 0 @ 0> )
. i=1

I - = @
Tl =)' v—yi—1+0)"

i=1
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/
Z(V*)/ifl)rﬂrf”f%)
(b — _x)(i:l !

l 51
((Z(V—%-—Unﬁ>+rﬁo+l)
i=1

Yx €la,b].

1 (/thz(w)‘HDfo(w)‘pdw);,

Proof Similar to Theorem 26.1, p. 567 of [4].

Converse theorems follow:

Theorem 19 Letv >0, v ¢ N, [Vl =n, 0< 8 <1; f € C([a, b]); and set § =
v+ B (n — v). Assume further that Ag+f e C(la, b)) : Aijrjf (a)=0,j=1,..,
n.Letalsoy; > 0: [yl =mi;v—y; = L, withe; = y; + B (m; — v;), and assume
thatv > y;and 8 > &, i =1, ..., 1; along with H]D)fo > 0.

Here a < x < b; q1 (x), q2 (x) > 0 are continuous functions on [a, b] and r; >

i
0:Y ri=r.Let0 < 51,5 < 1ands{,sé<0suchthat$+l,=1 l—i—é:l.

b:e]note by
0 (x) = ( / @) @) dw) ’ (38)

and L

0 (x) := </ (g2 ()™ dw) ° 39)
Set

5182
TSy — 17

Then

x ! ,
f g1 (w) (l_[ ‘HDZ"ff (w)‘ )dw >
a i=1

01 (x) 02 (x)

(40)

! T
l:[l{(F W=y (v =y = Dsisi + 1)(%)}

— .
: (x—a) 51 ; </ qé“yz ©) ‘H]])fo (w)’)m da)) P ’
——i
i=1

Vxé€la,b].
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Proof Similar to Theorem 26.2, p. 570 of [4].

Theorem 20 Letv >0, v¢ N, [v]=n0<B<1; feC([a b)), and set § =
v+ B (n — v). Assume further that A6 _feC((a,b): A TfF)=0j=1,.

n.Letalsoy; > 0: [y, =mi;v—y > 1, withe; = y; +,B(m, — Vi), andassume
that v>vy; and 8 > &;, i =1,...,1; along with H]D)fo > 0. Here a <x <b;

I
q1 (x), g2 (x) > 0 are continuous functions on [a,b] and r; >0: Y r; =r. Let
i=1
0<s1,8 < landsy,s) < Osuchthatﬁ—}— 1L =1, é—i— % = 1. Denote by
©2

i

b i
51 (x) = </ (q1 (a)))si dw) 41)
and ,
— b , 7
0, () = ( / (g (@)~ dw) . 42)
Set 615
A= .
S182 — 1
Then
b ! .
/ qi (w)l_HHD,},"'_’ﬁf(w)‘ do >
* i=1
: 0, (x) Os (x) ( ,i ) )
[T W =) (v =y — D sds; + D\ /)
i=1
[(£ (e : .
b— °l N sy 75
: (b—x) T (/ i (a))‘Hthf(w)‘ dw) ,
{(Zri ((v—)/i —1)s +s2_2)> + 1}
Vxela,b].

Proof Similar to Theorem 26.2, p. 570 of [4].
Extreme cases follow when p = 1 and ¢ = oo

Theorem 21 Letv >0,v¢N, [v]=n0<B<1; feC([a b)), and set § =
v+ B (n — v). Assume further that Aa+f e C(la, b)) : A f (a)=0,j=1,.
n.Letalsoy; > 0: [y, =mi;v—y > 1, withe; = y; +,3 (m; —yi), andassume
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thatv >y, and § > ¢, i =1,...,1. Herea <x <b,0<qg € C([a,b]) and r; >
i

0:> ri=r.Then
i=

X ! ri
[ aw | s | do < (44)
@ i=1

a Hp»h rv— 1 riyi+l1
”q”oo,(a,x) (H D fHoo (a, x)) (X - [1) ‘g 7

1 l

[T@E—y+D)" (rV—ZriVi-i-l)

i=l1 i=1

Proof Similar to Proposition 26.1 of [4], p. 573.

Theorem 22 All as in Theorem 21, with now Az_f € C ([a, b)) : Ai:jf ) =0,
j=1,..,n. Then

b ! i
| a@ [T s | aw < (45)
¥ i=1

.
— Hpv-P H rv—XI: rivi+l
191l 0o, ¢x ) <” o | o) (b—x) =

7 7 ’
[TTW—y+1)" (VV—ZriJ/i-i-l)
i=i

i=1

Vxé€la,b].
Proof Similar to (44).

From now on, we present only left side inequalities as the right side ones follow
easily.

2.2 Results Involving Two Functions

We present

Theorem 23 Letv >0,v¢N, [vl=n 0<8<1; fi, fzeC([a b]); and set
8= v—i—ﬂ(n—v) AssumefurtherthatA +fi-€eC(a,b): Aa+ fir(@=0,j=
I,..,n; j*=1,2. Let also yv; >0:[y;1=m;; v—y; > 1, with ¢ =y; + 8
(m; — y;), and assume that v > y; and 8 >¢g, i =1,2; a <x <b. Consider
p() >0 and q(t) =0, with all p(t), ) ,q (@) € L (a,b). Let A, >0 and
hasAg =0 &y < p, where p > 1. Set

@ (v=n—=Dp 1
P (@) = / (00T (p (1)) 7 d, (46)
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k=1,2,a <x <b;

A ) = 1@ (P (w))xa(%l) (P (w))ly(pT_]) (p ()7
(w) =

T =y W=y

P—hv

Ao (x) 1= ( / (A(w))p%dw> "

81 = 21_( "p"), if e + 4y < p,
L if ke + Ay > p.

and

If A5 = 0, we obtain that
! Hyyn.B M . b
[Caw | nwl| [oin o]+

D o] P02 1 (w)}“] do <

Ay

(Ao (x) |A§:O> ()»a)-t)w) iy

Lixp(w)H”Difﬁ(wﬂp+¢”D3fﬁ(wﬂ”]dw}

Gotiv)

Proof Similar toTheorem 2 of [5] and Theorem 4 of [9].

The counterpart of the last theorem follows.

Theorem 24 All here are as in Theorem 23. Denote

'E .
5 120 — 1 ifag = A,
1, lf)»ﬁf)\.v.
If Ay = 0, then

/ax qw) [‘HDZZJ}ﬁfz (60)‘AE ‘HDfol (a))‘xv +

"D £ (w))xy "D £ (w)\“] do <

13

(47)

(48)

(49)

(50)

(D

(52)
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=2 Ay v 3
(Ao () I,=0) 2" 7 85

)\E+)»v

(xm—xﬁ)
* v P v P 4
[/ p@ [["DL i @) +]"DiL fo @) ]dw} ,
alla <x <b.
Proof Similar toTheorem 3 of [5] and Theorem 5 of [9].

The complete case 1, Ag = 0 follows.

Theorem 25 All here are as in Theorem 23. Denote

71 = 2 A.v - 1’ lf)‘a + )‘-E = )\'Uy (53)
1’ l\f)“ol + )“E S )“Vv
and
L, ifha + A5+ Ay = p,
_2 — li(xaﬁxﬁykv) (54)
2 " ket Ag+ A S p.
Then

Ag

x A Ay
/ q(w)[)HDZ:ﬁfl @[ D f@| D f@| 69

07 [ e 03t @] o <

A Ay ’ AT 427 (F)
0 (%) (ha + 25) (ke + A5 + A1) [ayﬁ "+ (7145) }

vz

* v p v p r
(f p@ [|"DL fi @)+ |"DiL £ @) ]dw) ,
alla <x <b.
Proof As for Theorem 4 of [5] and Theorem 6 of [9].

We continue with a special important case.

Theorem 26 Letv >0, v¢N, [vl=n, 0<8<1; fi, /2 € C(la, b)), and set
8 = v+ B (n — v). Assume further that Al f;« € C ([a, b]) : Ai;’ fi+@)=0,j=
1,..,n; j*=1,2. Let also y; >0:[y;l=mj; v—y; > 1, with ¢, =y, + B
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(m; — y;), and assume that v > y; and § > ¢;, i = 1,2; but here itis y, = y; + 1;
a <x < b.Consider p(t) > 0andq (t) > 0, withall p (t), %, q (t) € Ly (a, b).

Let by > 0,0 < Agy1 < 1, and p > 1. Denote

6y e | 290 =1 ifhe = A,
17 if)‘a S)\'O[Jrl’

X . 1=Rg41 O3 hgit Aot
L(x):=(2 St d — ) :
(X) ( /a‘ (q (w)) w) ()\a + )erl

and
* G=n-Dp 1
Py (x) = (x—1) " (p@) »'dt,
p p=1 \ Aatrati
P
T (o)=L (2 ,
'v—y)
Wy = 55 Cathasn)
and
O (x): =T (x)w.
Then . N .
o a+1
[ a@ [\Hmzﬁﬁ @[ D )|+
Hmyi.B Yo g royi+1p Aot
D2 f @) DI i @) | do <
hathgl

P

@ (x) [/ p@ ("D i @] + "Dt @)|) dw}

alla <x <b.
Proof As in Theorem 5 of [5] and Theorem 8 of [9].

We give

(56)

(57)

(58)

(59)

(60)

(61)

(62)

Corollary 1 All here are as in Theorem 23, with Ag =0, p (t) = q (t) = 1. Then

x Aa v Ay A v Ay
/ [\HDZ:% @)|" "D fi @+ "D @) "D 2 @) ]dws

(63)



16 G. A. Anastassiou
Ga+Ay)

Ci (x) (f (| et i@ + | 1 (w)\")dw) -

all a < x < b, where

Ay

Ao\ T
Ci (@) 1= (A0 () 1) (A H) b, (64)
1_’»u+\ .
81: 2 ’ lf)‘a"i_)\vfp’ (65)
L if ke + 20 = p.

We find that

(A0 () 1sym0) = {( w=D ) :

TE@—=y)“p-—np-—1

P—hv
( S ) } x—a) T (66)
()\avp_)\aylp_)"a+p_)"v) p

Proof As for Corollary 1 of [5] and Corollary 10 of [9].

We continue with a related result regarding |||/ -

Theorem 27 Let v >0, v¢ N, [vi=n 0<8<1; fi, eC([a b)) and set
d=v ~|—,3 (n—v). AssumefurtherthatAa+f] e C(a, b)) : Aa+ fi+@)=0,j=
1,..,n;, j*=1,2. Letalsoy; > 0: [y;1 =m;;v—1y = 1L,withe; =y, + B (m; — y;)
and assume that v > y; and § > €;, i = 1,2; a < x < b. Consider p (x) > 0 and
p (x) € Ly (a, b). Let Ay, kg, Ay > 0. Set

(x _ a) (Ulafjn )\a+\))»gf}/2)»g+l)

T = . 67
) (V)\.a — ViAo + U)»E - )/2)»3 + 1) (©7)
12 () oo a.x)
T@=—n+))*TO-pn+1)7
Then . . X
[ ra [(HDZ’ffl | "0 1o @7 "D @)+
2 @7 P | |0k (w)]“] dos  (68)

25

L1

00,(a,x) 00, (a, x)

T (x) by [[2Cathe)
s L IS
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HH]D)V B 2(hetrv)
00, (a,x) ’

ol

00,(a,x)

alla <x <b.

Proof Similar to Theorem 7 of [5] and Theorem 18 of [9].
Next we give converse results involving two functions.

Theorem 28 Letv >0, v¢ N, [vi=n0<8<1; fi, f» € C([a b)), and set
d=v +,B (n —v). AssumefurtherthatA +fi-€C(a,b]): A fj (a)=0,j=
1,.on;, j*"=1,2. Letalso y; > 0:[y;1=m;; 0 < p < 1, ; >v—y, > 1, with
& =y + B m; — ), and assume that v > y; and 6 > &, i = 1,2; a <x <b.
Consider p(t) > 0 and q (t) >0, with all p (t), ﬁ, q (t) € Ly (a, b). Further

assume that H]DZ’ff,-, i = 1,2, isof fixed signa.e. on [a, b]. Let A, > 0 and A, )»3 >
0 such that ), > p. Here P, (w), A (w), Ao (x) are as in ( 46), (47), and (48),
respectively.

Set

| Gativ)
»

8 :=2 (69)

If A5 =0, then
' Hpn s b
/ q(w)[\ D fi@)| "l )+ (70)

D fy | [ 7 (w)}“] do =

Ay

(Ao (x) |A§:O> ()»a)—t)»v) iy

[/ P (@) HH]D)foI (a))‘p + "Dt £ (w)"’] dw}

Gotiv)

Proof Similar toTheorem 5 of [10] and Theorem 4 of [8].

We continue with

Theorem 29 All here are as in Theorem 28. Further assume Ag > A,. Denote

8§y =2""n, o
= (6 — )27,

If \y =0, then
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g

v,B oz
DL fi @)+ (72)

[ aw UHDZiﬂfz (@)

"D fi (a)))xg "Dy £, (a))‘k"] do >
Ay

p— Ay ’ I
(Ao (x) Ir,=0) 2777 85

)\E“‘)\v

(retig)

(/axp(w) H”DZ‘ffl (w)‘p +|"Dit (w)"’] dw) ,
alla <x <b.

Proof Similar toTheorem 6 of [10] and Theorem 5 of [8].

Next we give a particular converse result involving two functions.

Theorem 30 Letv >0, v¢N, [vl=n, 0<8<1; fi, 2 € C(la, b)), and set
§ = v+ B (n — v). Assume further that Al f;« € C ([a, b]) : Ai;’fj* (@ =0,j=
1,..,n; j*=1,2. Letalso y; > 0: [y;]=m;; 0 < p < 1, % >v—1y > 1, with
& =y, + B (m; —y), and assume that v > y; and § > €;, i =1,2; yo =y +
1; a <x <b. Consider p(t) > 0 and q (t) = 0, with all p (1), %,q(t), qut) IS

Lo (a, b). Further assume that HDZ’ff,-, i = 1,2, is of fixed sign a.e. on [a, b]. Let
)"a = )\'C(Jrl > 1.
Denote

Aa

0= (277 — 1) 27, (73)

L (x)isasin(57), Pi (x)asin(58), T (x) asin (59), w; asin (60), and ® as in (61).
Then

)‘DH»I

+

x A
[ a@ |[on 5@ o2 o)

D )| [P (w))““] do > (74)

rathotl
P

@) U p@ ("D s @)| + "D @) ) dw} ,

alla <x <b.

Proof Similar to Theorem 7 of [10] and Theorem 7 of [8].
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2.3 Results Involving Several Functions

‘We present

19

Theorem 31 Here all notations, terms, and assumptions are as in Theorem 23, but

for fj € C(la, b]), with j =1, ..., M € N. Instead of & there, we define here

Call

If A5 =0, then

x M A Ay
[ aw | ]t @f ot s @l do <
a =1

Ao thy

P 71; lf)\a-i-)wZP

Aat+Ap
a*-—{Ml_ 7 ifhe + A < P
1 -

o \7
o1 () 1= (40 () |10 (A . A) .

Go+iv)

. M
st | [ p | Y|t @) | do
a _]=1

alla <x <b.

Proof As in Theorem 2 of [6] and Theorem 4 of [7].

We continue with

Theorem 32 All here are as in Theorem 31. Denote

and

If Ay = 0, then

B .
53 = 2;”/ - ]s lf‘)"ﬁz)“\n
17 lf)”gi)"w

Jvtig

17 lf)\'u +)\-E 2 D
&y =
M7, ifh + Ag < p.

i A P
@2 (x) 1= (Ao (¥) r,=0) 27 ( ) 85 .

)»E—i-)nv

(75)

(76)

(77)

(78)

(79)

(80)
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N M—1
/ g {1170
4 j=1

Tt )+

{HDZi*ﬁfj @72 fr @[ }

Hyv:B b
Dl fi @)+ |0

=

Ay
D (w)] “dw

g x M ’
<2 anwi [ rw Y|l |ap 6
alla < x <b.
Proof As for Theorem 3 of [6] and Theorem 5 of [7].
We give the general case.
Theorem 33 All are as in Theorem 31. Denote
tathy
Y= 2 A." =1 if ke + 25 = Ay, (82)
L if ha + 25 < A,
and
1, if Ay +ig+Ar = p,
Yy = 1,(”“/5““) (83)
2 " ifha g+ < p.
Set
A )\.1} 7‘) v 2[’*’»\/ ( )Q
@3 (x) 1= Ag (x) [a?z-lr 7 (Virg ”]
(ha +25) (ke + 25+ 1))
(34)
and
1’ l:f‘)\'a—i_)\-g—i_)‘-vzp’
& 1= 17(M+ B+Av> (85)
M ! ,lf)"a+)\ﬁ+)\vv§p
Then

€ ozt ol ot o]

j=1

/ q (w)
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‘H]D’Ziﬂfj

T e @)D @) |+ }
U”DZ:“’fl @[ 02 fu @)Dl |+
07 7 @[ ][0 ]| o <

(i)
,,

An+Aﬂ+/v

N M
2 amw! [ @] ] s @] | (36)
a j=1

alla <x <b.
Proof As for Theorem 4 of [6] and Theorem 6 of [7].
We give

Theorem 34 All here are as in Theorem 26, but for f; € C ([a,b]), j=1,... M €
N. Also put

17 lf‘)\'a +)" zp’
&4 1= l_(za+xa+l )QH. (87)
MU i+ hen < p.
Then
* M- B +1,8 Aa+1
[ aw {Z[)HW' 5y @[ IR s @
a ]:1
)‘ot+1:|}+|: ot+1
Ag+1
"D fu @)D "o <
- ()‘Dt“*aﬂ)
tetias] * u HmVB ’
275 6, @ (x) /p(a)) Z’ D f,(w)‘ do . (88
a ]: |

alla <x <b.
Proof As for Theorem 5 of [6] and Theorem 7 of [7].

We continue with results regarding |||, -



22 G. A. Anastassiou

Theorem 35 All are as in Theorem 27, but for f; € C ([a,b]), j =1,..,M e N.
Then

' - Hpyn.B ey | Hpyv.p b
/a ) Zl[\ D £ @] D fi @ DL £ @)+
=
A S R ]
e e G e

A

"D fi @)

8 ™ V.8 Ao
"D @) DL fu @) “dwg (89)

2(ha+) 205
Hyv:B B

00,(a,x) 00, (a,x)

M
T [H DL 5|
j=1

alla < x <b.
Proof Based on Theorem 27.

One based on Sect.2.2 can write down converse results for several functions
and also write down right side inequalities for two or several functions and cover
interesting specific examples.

All these results can have great applications to related fractional differential equa-
tions proving the uniqueness of solutions or giving upper bounds to their solutions.
The reader is referred to the author’s monograph of 2009, [11], to continue such
studies. We choose to stop here.
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On a Non-linear Diffusion Model of )
Wood Impregnation: Analysis, i
Approximate Solutions, and Experiments

with Relaxing Boundary Conditions

Jordan Hristov

Abstract Analysis and approximate integral-balance solutions of a non-linear dif-
fusion model of wood impregnation by methacrylate have been developed in two
cases: (i) Dirichlet boundary condition assuming instantaneous saturation of the
wood surface contacting the liquid bath and (ii) Relaxing Dirichlet boundary con-
ditions accounting for the fact that instantaneous saturation is unphysical and takes
some time to be established.

Keywords Diffusion - Wood impregnation - Non-linear diffusivity + Approximate
solutions - Relaxing boundary conditions

1 Introduction

The liquid penetration into wood chips is an important technological operation related
to the development of new building and insulation materials, materials for work under
severe climatic conditions, as well as new materials for everyday use with increased
and specific properties. Many approaches both experimental and theoretical have
been developed to understand the main mechanisms and underlying phenomena of
liquid penetration into the complex structures of woods [1-3]. In general, the forced
penetration of liquids into wood’s capillaries happens due to a pressure gradient
which can be considered as a difference between the sum of external, hydrostatic
and capillary pressure and the total gaseous and water vapour pressure in the wood
chip internal space, that is,

AP = (Pexternal + Phydrostatic + PCapillary) - PGaSJrVapours (l)

J. Hristov ()

Department of Chemical Engineering, University of Chemical Technology and Metallurgy, 8
Kliment Ohridsky Blvd, 1756 Sofia, Bulgaria

e-mail: jordan.hristov@mail.bg

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023 25
J. Singh et al. (eds.), Advances in Mathematical Modelling, Applied Analysis

and Computation, Lecture Notes in Networks and Systems 415,
https://doi.org/10.1007/978-981-19-0179-9_2


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-0179-9_2&domain=pdf
mailto:jordan.hristov@mail.bg
https://doi.org/10.1007/978-981-19-0179-9_2

26 J. Hristov

In general, from a theoretical point of view different, different types of liquid flows
may occur in the porous structure of wood [2]. However, it is generally accepted by
the convention that the flow is strongly non-linear including also molecular slip at
the porous walls and kinetic energy loss when the fluid enters the pit openings [4-6].
Upon the assumption of pure viscous liquid flow inside the wood porous structure,
the process can be modelled by the Darcy model

_K AP ,
Q—;T 2)

where K is the permeability [m?] and u[Pa - 5] is the fluid dynamic viscosity.
Alternatively, the Poiseuille flow equation through N parallel capillaries of
radius r

0= N%r“T 3)

can be applied. In such cases, the capillary pressure may be presented by the capillary

rise i and surface tension o as
ro

h=_|—
2u

t “4)

1.1 Wood Impregnation: Main Factors Affecting the Process

The most important factor in the process of fluid penetration into the wood capillaries
is the geometry which varies and depends on the type of wood nature. However,
the longitudinal flow is dominant in woods and the most critical dimension is the
length of the sample (wood chip). In this context, permeability is strongly affected
by moisture and air contents. The viscosity of the penetrating fluid and its surface
tension are the principal fluid characteristics when there are no chemical reactions
during the impregnation process. But if a chemical reaction takes place, this may
change the internal wood structure and affect the fluid flow through the capillaries.
With increase in the temperature of the penetration liquid, below the boiling point,
when the process is driven by constant outside pressure, the result is an increasing
penetration rate, because of the reduction in the fluid viscosity. In this context, upon all
conditions remaining unchanged, the increase in the pressure gradient also increases
the penetration rate.

Thus, we may consider two types of fluid penetration (impregnation) regimes: (i)
Upon a constant external pressure when the concentration in the bath surrounding the
wood chip is not so important, and (ii) Penetration of fluid into the wood sample only
due to capillary pressure in a calm bath with concentration unchangeable during
the entire impregnation process. In both cases, the sample saturation S should be
considered. In general, the concentration of saturation in a porous medium is defined
as Coo = M”“]‘JOMO, where M, is the initial amount (at # = 0 ). In wood impregnation
Processing, the fluid saturation S (dimensionless quantity) is defined as
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where p; is the bulk mass density of the dry wood [kg/m3], oy is the bulk mass
density of the fluid inside the pores [kg/m?], p, is the real mass density of the fluid
[kg/m3], ¢ is the wood porosity (dimensionless) and 0 < ¢ < 1. If a capillary rise
mechanism of liquid is only considered as a driving force, as in the present study,

then the correlation between the saturation S and the porosity is well presented by
the approximate reciprocal relation [2] of a typical shape presented in Fig. 1.

1
cap = T —m> 0 S 1 6
SR ENC R ©

where m depends on the accuracy of data approximation procedure (Fig. 1).
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1.2 Kowalski’s Model

Kowalski et al. [7], concerning diffusion of methacrylate in wood (impregnation)
with the saturation § = C/Cs (C is the saturation concentration corresponding
to S = 1 as a dependent variable, formulated the following model:

39S a[ 1 38

— = — | ——, 0<8§5<1, S¢=0)=0 7
ot pfax (S+\/¢)28xi| - - ( ) ™

with a boundary condition at the solid-fluid interface

a0 s ®)
(S+vo) ™ Sy—s

inside the porous solid, at x—0

outside the porous body , at x—0

This model assumes only capillary pressure (see the relationship (6)) as the driving
force of the impregnation process. It is worth noting that in the formulation of the
boundary condition (8), both sides consider the same value of S without taking
into account that both sides of this relationship are constituted for different media
separated by the fluid-solid interface at x = 0. This is a wrong formulation of a
boundary condition, common for mass transfer processes, which has to be formulated
as an equilibrium relationship, namely

Qx:()lfluid =0y (Cx:O - Coo) (9)

where C,_ is the concentration of the fluid at the interface, while «,, is the mass
transfer coefficient at the same point from the side of the liquid bath where the wood
sample is immersed.

The interface concentration can be easily converted to saturation S through the
relationship (5) but we have to mention one important fact, precisely, the samples
are in an infinite liquid bath with unchangeable concentration due to the part of fluid
absorbed by the body. Therefore, two options might be considered concerning the
correct formulation of this boundary condition, namely

(i) Instantaneous establishment of the equilibrium (saturation) at the body surface,
that means Sy—¢ = 1, thus formulating Dirichlet boundary condition, and

(i1) A relaxing in time boundary condition taking into account that establishment
of the equilibrium (complete saturation) at the solid-fluid interface needs some
portion of time, that is, we need a formulation of the so-called viscoelastic
boundary condition.

To close these comments, the main conclusion is that the boundary condition
(8) is incorrectly formulated and physically unsound (see further Sect. 1.3). From a
mathematical point of view, this boundary condition is challenging, as we will see in
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the next section commenting on the Fokas’ solution, but the results of these solutions
are physically questionable.

1.3 Kowalski’s Model: Some Comments

In the work of Kowalski et al. [7] from where the model considered in this work
comes, the saturation flux j; is defined as

1 as
js=—A— (10)

(s+v@)

Here, A is a general constant depending on the process Parameter, and we may
consider it as diffusivity in the sense of the diffusion process modelled by Eq. (7).
Precisely, the relationship (10) can be presented more correctly as

S
Js = —D(S)a— (1)
X

with a non-linear saturation-depended diffusivity expressed as

D) =20 =2 12)
R (

and related to the so-called Fujita’s non-linear diffusivities [11-13].

It is worth noting to mention that Kowalski’s model is a particular case of the gen-
eral non-linear diffusion model with moving boundary formulated by Broadbridge
(in a CSIRO preprint as quoted by [14] and also discussed in [15]) in a semi-infinite
heterogeneous medium 0 < x < X (¢), namely

9t ox

ou 9 |: 14+cx Ou c

- (a+bu)25+2b(a+bu):|’ 0<x<X( (13)

with fluxes at the boundaries

e iy x=0. 150 (14)
(a+ bu)® dx ' -
c ou . .
—aX (1), x=X@), X(t=0)=0 (15)

2b (a + bu) dx

For ¢ = 0, corresponding to the homogenous case, i.e. when the diffusivity is spatially
independent, we get
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ou 0 1 u
at  dx

which is the non-linear diffusion equation considered by Storm [16].

This equation, related to heat conduction in solid hydrogen, has been also studied
by Rosen [17]. In the literature available, the main solution approaches address
reciprocal transformations [8, 14, 18] (explained next in this text through Fokas’
solution) and Backlund transformation [19].

1.4 Fokas’ Solution Approach

Fokas et al. [8] considered the model (7)—(8) with a formulation considering a half
part of the body (see Fig. 1) with an impermeable condition at the symmetry axis
x =0as (dS/dx ),_o = 0 and a fluid-solid interaction at the interface x = L (the
boundary condition—Eq. (8)). The main approach of Fokas is to linearize the model
equation (due to the non-linear diffusion coefficient) and move the non-linearity to
the boundary condition. This was done by applying the reciprocal transformation [8,
9] with a new variable $* = § + /¢, namely

9s* 9 [ 1 a8
ar  ox | S*2 ax

i|,0<x<L (17)

and boundary conditions

a5*
=0, x=0 (18)
0x
1 a8* o
- — 22 —q1 -85, a=-= 19
S*Z ox (X[ +\/¢ ] a A,Of ( )

Then, applying the following reciprocal transformation to the model (17)—(19)

*

S 1
dx, di'=di, §'=, 0<|[$*<oc0 (20

dx' = S*d Lol
o Tt 2 ax

the result is a linearized equation with a non-linear boundary condition (23), namely

s’ 9%y
— = 21
ot ax/Z ( )
as’ ,
i 0, x'=x|_, (22)
8S, !/ ! ’
W:a[S(l—i—\/a)—l], x'=x"__, (23)



On a Non-linear Diffusion Model of Wood Impregnation ... 31
However, this linearization of the main equation needs a definition of the so-called
reciprocal boundaries defined as follows:
At the symmetry axis
X 0,0)=0 (24)

At the solid-fluid interface (x = L)

x' (L, 1) :ﬁL—a(1+ﬂ)t+a/S*(L,r)dr (25)
0

Finally, the modified model becomes

98’ 9%S'

- 7 ! / /
TR 0<x' <X'(') (26)
3s’ /

W:O’ X :O (27)
a—S/za[S/(l—i-\/a)—l] x/=X/(t/) S/:L =0 (28)
ox’ ' ' ﬁ’

.
X ()= LyF—a(1+0) 1 +a [ ot 29)
= ive o PETE ] s orm. o
0

1.5 Some Comments and Aim

The main idea is to develop an approximate and physically adequate solution rather
than mathematically correct but difficult to handle results. These two approaches are
not in conflict but mainly demonstrate alternatives in the problem solution. Further-
more, there is a reformulation of the boundary condition at the fluid-porous medium
interface stressing the attention on the fact that it should relate functional relationship
on both sides of the solid-fluid interface which is not taken into account in Kowalski’s
model. In addition, relaxing Dirichlet boundary conditions account for the fact that
there is no instantaneous surface (at the fluid-solid interface) saturation.
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1.6 Chapter Organization

In the sequel, the following interrelated steps towards the new approach of the prob-
lem solution are developed: Sect.2 presents the basic techniques of the integral-
balance method (with an assumed parabolic profile 2.1.4) and the basic steps in the
transformation of the non-linear diffusion term 2.1.3. The approximate solutions
in Sect. 3 consider two principal directions: Solutions with the classical Dirichlet
boundary condition (assuming instantaneous saturation of the fluid-sample inter-
face) in 3.1 and experiments with relaxing Dirichlet boundary conditions allowing
also to develop integral-balance solutions in 3.2. Numerical tests with both types of
boundary conditions are presented in 3.1.4 and 3.3.4.

2 Integral-Balance Solutions and Related Model
Transformations

The approximate solutions developed in this chapter are based on the integral-balance
approach which transforms the initial diffusion model into an integral relation which
has to be satisfied by an assumed profile (as a function of the dimensionless variable
n = x/8) and obeying the so-called Goodman’ boundary conditions [22, 23]

_90) _
u@=—->=0 (30)

This approach introduces a finite penetration depth § (t) of the diffusion substance
(absorbed fluid or heat) depending on the nature of diffusion process modelled. The

motion of this front in time has a finite speed thus correcting the infinite speed of the
original model which can be presented as

90 9 90 n
Z o pe "=, e=(s 31
at ax[ 0 Bx] (5 +v%) D

where in the present case m = 2. Equation (31) is from the class of the fast diffu-
sion processes [19] in contrast to the slow diffusion processes [24-26] where with
D (®) = Dy®™ (m > 1) the solutions as sharp fronts propagate with finite speeds
[25, 26].

The problem considered in this study is a transient process of fluid penetration
into a porous medium, within a diffusion layer bounded within the range 0 < x < §,
up to the moment when the symmetric centre of the slab will be reached (when
8 (t) = L—see Fig.3).
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Fig. 3 One-dimensional physical model of fluid impregnation of a porous wood slab with a finite
diffusion layer defining the penetration front §(¢)

2.1 Integration Techniques

The integral-balance method employs mainly two principal integration techniques:
(1) Single-integration method and (ii) Double-integration method. For the sake of
clarity of explanations, these integration techniques will be briefly presented next.

2.1.1 Single-Integration method

The single integration over the penetration depth §, known as the heat-balance integral
method of Goodman [22], yields

) ) )

du (x, 1) 9%u (x, 1) d f du (0, 1)
——~dx = | Dy—————d — ,)dx = —Dyg—————= (32
/ ar / 02 T gy et Ddx 0 G
0 0 0

s
This is a simple mass balance relation of the mass absorbed m () = f udx whose

0
time evolution dm (t)/dt is controlled by the mass flux at the interface x = 0. On
the right-hand side of (32), the gradient du (0, t)/dx should be defined through the
assumed approximation of u (x, ).

2.1.2 Double-Integration method
This approach has two consequent integration steps over different domains along the

penetration depth, namely [26, 27] (1) integration from x to § and consequently (2)
integration from 0 to §.
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§ 8 3 § 8 82
f/ uéj’l)dxdxszDo u(x l)d d= — /fu(x t)dxdx = Dgu (0, 1)
0 x 0

x 0

(33)

The result is that now the right-hand side of the new integral relationship depends on

the boundary condition at x = O only, i.e. it is independent of the type of the assumed

profile. Moreover, this is a mass balance relationship in an integral form over the

diffusion layer (penetration depth), expressed through the time evolution of the first

moment of the absorbed mass of the fluid which at any time is balanced by the mass
load (concentration) at the interface x = 0.

2.1.3 Transform of the Non-linear Diffusivity

The method applied in this chapter does not utilize either the commonly encountered
approach [28, 29] applying the similarity variable & = x/+/Dyt to the original model
thus allowing to solve a non-linear ordinary differential equation [30] or the reciprocal
technique commented earlier. The principal step is oriented towards a transformation
of the diffusion term on the right-hand side of the original model allowing easily the
application of the integral method (see such an example in [32]). Precisely, for the
sake of simplicity and generalization of the applied technique, replacing S by u and
/9 by a, we have

D 0 Dy 0 1
—02_u __ 0% f_ - (34)
(a + bu)” 0x b ox | (a + bu)
and therefore 5
ou Dy 0 1
—_—=—— | — 35
ot b 0x2 |:(a+bu)] (35)

where, with a = /¢ and b = 1, in the original notations we have

u_ 0 I o
37 = Doga —(ﬁ+S) (36)

Equation (36) is the principle equation used in the solutions developed next. How this
transformation affects the result of the integration techniques will be demonstrated
next.

Single-integration method: Integrating the model equation in its general form (35)
from O to §, the result is

s 5 5
—Dy 0 d —Dy 0
ot (a + bu) ax du (a+bu)” 0x |,_,
0 0 0

(37
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Therefore, the time evolution of the absorbed mass at any time is balanced by the
mass flux at the interface x = 0 as it was commented earlier in the text. In terms

of the liquid absorbed evolving in time, this means that the rate of mass uptake, i.e.
8

dm/dt =9/4 f udx. Now, replacing the function u (x, ¢) in (37) by an assumed

0
profile u,, expressed as a function of dimensionless space variable n = x /& (see the
next section), obeying the Goodman’s conditions (30), we get

5
d D du, (0,1t
—fua (x,t)dx = 0 4a 0. 1) (38)
dt a+ bu, (0,1) 0x

where u, (0, t) = 1 (Dirichlet problem, for instance) and u, (8, t) = u, (6,1)/dx =
0.

This integral relationship becomes a differential equation about § () when u,, is
replaced by the assumed profile (43).
Double-integration method: Following the DIM integration technology, we have

) 58 § & 5 D 3
/ / M dxdx = / f 22 2 xdx (39)
ot ox | (a + bu)” 0x
0 x 0 «x

The first step in (39), in dimensionless fixed (non-moving) coordinates (see the
comments in the next point), results in

1
—Dy 32 1 B 9 1
/5 W[mbu)]d”‘_%%[wbu)}

n

! i) [ 1 1 ]
=—-Dy— |- —
. onla (a+bu) n
(40)
The second integration yields

—D() 32 1 bu() b
T dn = Dy = Dy (41)
b n? | (a+bu) a (a + buy) a(a+Db)
0

Taking into account that a = cont. the result of the second integration is

S
D() ou b
= _ 42
0/'/ [<a+bu>28x]dm D@ rn 2

X

which depends only on the boundary condition (in this case uy = u; = 1) atx =0
(Dirichlet problem).
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2.1.4 Assumed Profile

The solution developed further uses an assumed parabolic profile with an unspecified
exponent n expressed as a function of the dimensionless variable (distance) n = x/§
[23], namely

x n n
", = u0<1 - 3) = 5, = S(1—n) (43)

This assumed profile has been analysed in [31, 32] when the diffusion coefficient is
constant as well as when it is concentration dependent [26]. Defining a dimensionless
variable n = x/§ , we have 0 < n < 1 and consequently S, = S,;(1 — n)". At the
boundaries of the penetration layer, we have S (n =0) = 1 and S (n = 1) = 0, that
is, it satisfies the boundary conditions (30). The introduction of the dimensionless
variable n = x/§ allows the moving boundary problem (with a moving front § ())
to be transformed into a fixed boundary problem.

3 Approximate Solutions

3.1 Dirichlet Boundary Condition
With the Dirichlet boundary condition, the approximate profile takes the form

X n
Se=5(1-7%) (44)
8
Physically, this means instantaneous saturation of the solid-fluid interface at x =
0, that is, Sp = 1 since by definition 0 < S < 1. Now, we will see how upon such
boundary condition the integration techniques of the integral method work and define
the penetration depth & (¢).

3.1.1 Penetration Depth: Single Integration

From the integral relation of the single-integration approach (38) and applying the
Leibniz rule to the left side, we get

§

d X\ —Dy 98, (0,1)

= 1—2) dx = 45

dt/( 5> YT ATDbS, 0,1 ox “5)
0

With S, (0,7) = 1 and 2590 — 1 ip (45), we get
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SRS

8
X\ —Do n ld82 D()
1—2) dx = — )= = = 1 46
/< 3> o a—i—b( 5) ar Cagptth @9
0

The integration of the final result in (46) with @ = /¢ and b = 1, yields the pene-
tration depth defined as

\/—«/Zn (n+1)

SHBIM = (47
J1+ /o
or in a dimensionless form as
Supim _ 2n(n+1) 48)

VDot T+ /e

This result resembles the integral-balance solution of the classical diffusion equa-
tion where 8471 = +/Dot+/2n (n + 1) which can be obtained from (47) setting
¢ = 0, which refers to solid media without voids such as in heat conduction in solids
(where this integral-balance solution is mainly applied); this extreme case is not
considered in the development of the wood impregnation model discussed here.

3.1.2 Penetration Depth: Double Integration

With the result (40), then from the DIM integral relation (39) and the result (39) with
the assumed profile (43), we get

1 ds? b
— =Dy————=08=/Doty/y(n+1) (n+2)

m+1D)(n+2) dt a(a—l—b) a(a +b)
(49)
With a = /¢ and b = 1, the penetration depth is
1
= s — _
Spim = v Doty/(n+ 1) (n+2)P(¢), P (¢) e (0 +v9) (50)

or in a dimensionless form as

‘Sj’_M Vo + 1) (n+2)® () (51)

The final functional relationship ® (¢) = f (ﬁ) excludes the extreme cases of
¢ = 0 (a complete solid without voids) and ¢ = 1 (free space Fickian diffusion).
For example, only to the physical adequacy of (50) with ¢ = 0.5 = /¢ ~ 0.707,
we get @ (0.5) &~ 0.910; also for ¢ = 0.1 (low-porosity solids), this function gets a
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Fig. 4 Porosity function 3
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value @ (0.5) &~ 1.550; more illustrative is the plot in Fig. 4. In general, the increase
in ¢ makes the penetration depth shorter and this is not in conflict with the physics
since the saturation of the medium is inverse to its porosity because the capillary
pressure (see (45)) increases with reduction in the medium porosity and therefore
the flux defined by (10) increases too. In other words, the diffusivity defined by this
relationship increases as the porosity is decreased upon conditions keeping equal
level of the saturation S.

3.1.3 Approximate Saturation Profiles
With the results (47) and (50) about the penetration depth, we may now construct

the approximate solution through the assumed profile (43) as follows.
Single integration (HBIM)

S =|1- a =[l—nN "N AR E(
HBIM = W =[ nNi (n, 9)]", 1(n7§0)—m
v I+
(52)

Double integration (DIM)

x "
=|1- =171 n
Spim [ NN ((p)] [ NN (n, @)1 (53)

(n+1)(n+2)
Ny (n,9) =+/ 1 )b (p)= |— L 27T 54
2 (n, 9) n+Dn+2)P(p) NG (ENG (54)
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Fig. 5 Approximate profile 10
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Both solutions (HBIM and DIM) generate the Boltzmann similarity variable n =
x/+/Dot as an indicator that despite the non-linearity in the model equation the
behaviour of the saturation spreading into the depth of the impregnated solids is
Fickian.

The functions N; (n, ¢) and N, (n, ¢) accumulate effects of both the assumed
profile and the physical initial condition of the medium via the porosity (assum-
ing isotropic porous media without swelling or shrinking). Moreover, it represents
implicitly the effect of the wood porosity and capillary pressure on the penetration
depth.

3.1.4 Approximate Solutions: Numerical Tests

Qualitative numerical simulations of the approximate solutions with stipulate values
of the exponent n (n = 2 and n = 3) are presented in Fig. 5. The behaviour of these
profiles should be related to the effect of the sample porosity on the capillary pressure
(see Fig.2), that is, the lower wood porosity, the higher capillary pressure. As a
consequence, the higher the capillary pressure, the longer the penetration depth. In
general, since this a fast diffusion equation (see the comments related to Eq. (31)),
the solutions are concave profiles which is a well-known fact [37, 38].

3.2 Relaxing Dirichlet Boundary Conditions

The problem developed in this section refers to the physical fact that all natural phe-
nomena have their relaxation times up to establishments of equilibria. The Dirichlet
boundary condition is classic in the parabolic diffusion problem, but its formula-
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tion neglects the relaxation time of the surface concentration establishment, that
is, it considers instantaneous surface equilibrium between the porous medium and
the surrounding fluid. Since the main model is also parabolic and mainly valid for
long times, now we formulate a relaxing boundary condition that should obey the
following conditions:

So(t)=0, t=0 (55)

So(H)=1, t— o0 (56)

The second condition in (56) actually means the Dirichlet boundary condition
to be reached at large acceptable technological time. From this point of view, we
suggest three functions obeying the above conditions, namely

(a) Exponential relaxing boundary condition

So()=1—eX (57)

where the rate constant k controls the time needed by the equilibrium Sy () = 1 to
be attained. This relaxing function can be considered as a solution of the kinetic

equation
dSo

— ke M, S(t=0)=0 58
R e o ( ) (58)
With this formulation, the assumed profile becomes

sw=(1-e*)(1-3) (59)

satisfying Goodman’s boundary conditions.
(b) Relaxing boundary condition utilizing the Gaussian error function

So (1) = erf (kr) (60)

with a rate constant k which is a solution of

dSe 2%k _pp
S0 e St =0)=0 61
T ﬁe o ( ) (61)

leading to an assumed profile
X\"
S(t) = erf (ki) (1 — E) (62)

(c) Relaxing boundary condition utilizing the Verhulst logistic function

So(?) = (63)

14+eH
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widely used to simulate the Heaviside step function. The simple sigmoid function is
a solution of the logistic differential equation (considered also as a special case of
the Bernoulli equation)

dSy So 1
. =kS 1 - ) S O = > S? = 1 64
T o< sz) 0 (0) 50 Ssar (64)

In this case, the first condition of (55) is not obeyed but this will not affect the solu-
tion developed next since an additional condition § (# = 0) = 0 should be satisfied.
We apply only this simple sigmoid function since the task here is to see what is
the integral-balance solution when the physical background needs the fluid-surface
equilibrium to be modelled as a time-dependent process, but there is no restriction on
other functions obeying the conditions (55) to be obeyed. In such a case, the assumed
profile is

s =1—=5(-3) (65)

The behaviours of the relaxing functions considered are illustrated in Fig. 6 for
various values of the rate constant k.

3.3 Penetration Depth and Applicability of the Selected
Relaxing Functions

Now, we have to see what the results, when applying the selected relaxing boundary
functions to the stages where the penetration depth should be determined, are. Here,
we apply directly the DIM techniques since in this case, the right-hand side of the
integral relation depends only on the boundary condition at x = 0.

3.3.1 Exponential Relaxation Function

With the exponential relaxing function (57), we have (see the formulation (49))

8 6
n b
// (1= (1-75) dxdx = Dy (1= ™) (66)
0

which leads to

i [(1 e p— ] —D— "t (1-et) e
dt m+1)(n+2) a(a+Db)

The integration in (67) yields
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Fig. 6 Behaviour of the
functions used to simulate
the time-dependent
saturation of the solid-fluid
interface, for various values
of the rate constant k: a
S1—exponential function; b
S»—error function; ¢
S3—logistic function

Si(t)(-)

a)

Sz(t) (-)
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—kt

. >+C1 (68)

e

2 _ b 1
8 = Do s ik D (1+2) = <t+

With C1 = 0, we get

b
= \/Dom (I’l + 1) (I’l + 2)Rexponential (t) (69)

1 —kt
Rexponential (1) = \/m (f + %) (70)

The physical condition é (f = 0) = 0 cannot be obeyed since the first term on
the right-hand side of (68) is singular at + = 0, but we can see that for large times
we get 82 = t which corresponds to the solution with already established Dirichlet
boundary condition.

where

3.3.2 Error Function as a Relaxing Boundary Condition

With the error function as a boundary relaxing function and DIM, we get

)

X\ b
//erf (kt) (1 — 3) dxdx = Dy—=serf (ki) (1)
0 x
From (71), we have
8 = Dy—"— (4 1) ( +2)[r+ 1 } (72)
T @+ b " " ky/merf (kt) ks

or in the manner of the classical solutions with the integral-balance method, we get

1/2
—_—— b 1
=
o Doty (n+ 1) (n +2) a(a+b) l+t[kﬁerf(kt)e"2’2] 73)

In these functional relationships ((72) and (73)), the second terms in the brackets are
also singular at ¢+ = 0, but we can easily see that for large times these terms become
negligible and we get the classical result §> = ¢.

Note 1: Both relaxing functions ((57) and (59)) lead to relationships for § which
are singular for + = 0 but behave physically correct for large times. They are illus-
trated in Fig. 7a, c, respectively The singularity at + = 0 can be, to some extent, and
mainly from practical reasons, neglected since for # > 0 the solutions (in both cases)
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behave physically correct and approach the case with the classical Dirichlet boundary
condition. It is worth noting that the introduction of relaxing Dirichlet boundary con-
dition when the main equation is parabolic avoids the infinite speed of solution but
in the present case of wood interface it is easily handled as a solution but unphysical.
To this end is worth noting that in the integral-balance solutions have an inherent
drawback since in the simple case § = /Dot = d8/dt = Dy/2+/t which is singu-
lar at + = 0 and yields an infinite speed of the diffusion front. Such unphysical result
can be avoided if the constitutive equation about the flux contains a relaxing part (see
more details in [33, 34]), for instance, applying the fading memory approach [35,
36].

Note 2: Regarding the relaxation terms of the penetration depths for long times,
there are two distinct behaviours: (i) For the exponential and logistic relaxation
functions, controlling the boundary saturation, the long time behaviours approach
the square-root time dependence relevant to the Dirichlet boundary condition (Fig. 7a,
¢). In contrast to these two cases, the use of the error function results in a relaxation
term of the penetration depth which for long times approaches unity (see Fig.7b).

Note 3: To see what should be done in such a case, it is important to see what the
ratio of the relaxation time A = 1/k to the observation time is since the parabolic
model of the fluid penetration into the porous wood has no natural relaxation time if
the medium is considered as a semi-infinite. The ratio De = ’% = % can be defined
as a surface Deborah number. From the above expressions, it is obvious that for
large values of the product &z, i.e. small De the classical Dirichlet boundary condi-
tion is practically acceptable. On the other hand, with physical objects having finite
dimensions such as the wood chips impregnated, the classical diffusion time scale
tp = L?/Dy can be used to define % = % = Deyp,x as a Deborah number also.
If % = %" <« 1, then we can also accept the instantaneous surface saturation mod-
elled by the Dirichlet boundary condition as an acceptable approximation. All these
thoughts address further studies requiring experimental data to be fitted, but for now,
such data about the kinetics of surface saturation are missing; this does not allow us
to establish the magnitude of the rate constant k and the best relaxation function that

should be used at the boundary condition.
3.3.3 Logistic Relaxation Function
After the two tests with relaxing boundary conditions, let us now see what is the

outcome of the integral-balance solution when the logistic function is used. In such
a case, the DIM integral relation is

fafs;(uf)"dd _py > ! (74)
J (14 e*) ) = %4 (a+b) (14 e*)

X

leading to
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Fig. 7 Behaviour of the
time-relaxing terms of the
penetration depth with
different relaxation functions
at the boundary x =0: a
Exponential relaxation
function; b Relaxing error
function; ¢ Logistic function
at the boundary; d Relaxing
term in Eq. (85). Note All
calculations are performed
starting from r = 0.0001
thus avoiding the numerical
singularities
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Fig. 8 Relaxing term 1.0
(logistic function in the
boundary condition) in
Eq. (85) 0.95

0.90

0.80

R{ralaxing] (t) (-)

d)

d 1 5 b 1 as)
di |(l4e )+ Dm+2) | Ca@+b) (1+ek)

The integration in (75) yields

1 1 —kt
82 = {Doa (ab+ Y [m jjd } + c3} m+D@m+2)(1+e*)  (76)

The condition 82 (t = 0) = 0 yields

0= Z{Doﬁéln(b +C3} m+)(n+2)=C= —Doﬁiln(m
(77)

Then,

) b 2 (1+ek’

= Dy—m— — - -
0a(a—i—b)k t 2e—kt

b 2 1 —kt
83 (1) = /Dy m\/(n+l) (n+2)\/;‘/ln (%) (79)

which is valid for short times, as this approximation of the boundary condition
suggested.

In the simplest case with large k and t+ — o0, the relaxation function approaches
/T because

)(n+ D(n+2) (78)

and
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14 e* 2 1+ ekt
n() = 2 i (~55) (50)
then for kt — oo
2/ (1 2 2
\/; In <Eek’> ~ \/;,/ln () ~ \/;«/kt ~ V2t (81)

thus providing the conventional DIM solution developed in the preceding section. It
is demonstrated in Fig. 7c that for large values of the product k¢, the relaxation terms
behave as /7 corresponding to the solution developed with the unit step boundary
(Dirichlet) condition. In addition, an alternative approach with the series expansion
of the logarithmic term in the first expression of (78) yields

l4+e* 1 1, 1, 6
1 XN —t+ —t°— —t O (t 82
n( 2ok ) gt Tt ) 82)

If only the linear term is accepted with k = 1, then from (79) we get the conventional
DIM solution as a linear approximation

83(t) =~ / Dyt /ﬁ\/(n +1(n+2) (83)

Alternatively, we may express (79) in a more elegant way bearing in mind that
t=1In (e’ ) andkt = In (ek’ ) Then, multiplying and dividing the expression for §3 (¢)

by vkt = /In (e*) we get

85 (t) = /Dot /L\/(n+ 1) (n+2)v2 (84)
a(a+b)
Rearranging (84), one obtains a more convenient result
1
) = Dot | ——=+/ 1 V2 85
3 (1) Ot/ﬁ(1+ﬁ) (n+DH@®+2) (85)

or in a dimensionless form as (bearing in mind thata = \/p andb =1)
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B0 _ [ ey
= + 1) (n+2)v2
v Dot \/@(1 + x/a) (” o :

Now, we can see how for large times the dimensionless penetration depth approaches
the solution developed with the unit step boundary (Dirichlet) condition. Obviously,
at 1 = 0 it is singular, but as commented above, the singularity of penetration depth
rate at t = 0 is an inherent property of the method when it is applied to parabolic
models. The plots in Fig.7d show the behaviour of the relaxation term in (85) and
(86) for various values of the rate constant k.

— ——
R(relaxing)

3.3.4 Approximate Saturation Profiles with Relaxing Boundary
Conditions

Finally, we have to construct the approximate solutions. We have discussed the
problem related to the time development of the penetration depths, so in the sequel,
we will stress attention only to the approximate solution with logistic function in the
time-dependent boundary conditions. In this case, the approximate solution is

n

1 X
Sy (1) = 1—
14 e * /Dot In( L2t
[1 | o Ve D+ 2v2 =5 ]
(87)
or as
Sy (f) = (88)

14+eH

[\/ﬁ G F D+ V2 ln(i”)}

We cannot express the solution only as a function of the Boltzmann similarity
variable n = \/LDT since there are two time-dependent terms which both for large
times approach unity. In such a case, only profiles in terms of the physical variables
x and t are possible.

The plots in Figs.8 and 9 show that the saturation profiles are concave in shape
irrespective of the non-linearity of the problem solved. The normalized saturation
profiles S(#)/Sy(¢) are similar irrespective of the relaxation function at the boundary
x = 0. From these plots, we can see that the penetration depths for lower porosity
(see Fig.9a with ¢ = 0.25) are longer than when the medium porosity is higher



On a Non-linear Diffusion Model of Wood Impregnation ... 49

Fig. 9 Approximate 1.0 :
solutions (saturation profiles) Eﬂg“i”“"
with a logistic function as a Logistic BC
relaxing boundary condition
along the x axis for various
times: a Normalized profiles
where Syormalized =
S(t)/slagistic; b
Non-normalized profiles;
Inset: the behaviours close to
the interface showing the
unsaturated solid (wood)
surface at x = 0. Note
Calculations performed with
a porosity ¢ = 0.5, Dy =1
andn =3

S normalized { =)

a) X

1.0 precoreanenns
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DIM Solution
k=10
Logistic BC
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(see Fig.9a with ¢ = 0.5).This fact has to be attributed to the reciprocal relationship
between the capillary pressure and medium porosity (see Fig.2 and the comments
related to it). It is worth noting that the approach to relaxing boundary conditions
adequately models (see Figs.9b and 10b) the behaviour of real systems modelled as
it is confirmed by the results of Kowalski et al. [7] which is shown schematically in
Fig.11.

It is obvious that surface saturation is a slow process needing hundreds of hours
upon realistic circumstances. It is important to mention that the present work con-
siders the diffusivity Dy with dimension m?/s which means the time is measured
in seconds. This is correct, but we have to mention that the diffusivities of highly
viscous fluids (such as the methacrylate used by Kowalski et al. [7] in low porous
woods are extremely low and therefore it is more convenient to use a dimension m?/ h
which leads to time measured in hours (as in Fig. 11). Kowalski’s results strongly
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Fig. 10 Approximate
solutions (saturation profiles)
with error function as a
relaxing boundary condition
along the x axis for various
times: a Normalized profiles
where Syormalized =
S(t)/serrarfunction; b
Non-normalized profiles;
Inset: the behaviours close to
the interface showing the
unsaturated solid (wood)
surface at x = 0. Note
Calculations performed with
a porosity ¢ = 0.25, Dy =1
andn =3

J. Hristov
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indicate that even after 800 h (not presented here but available in Fig.5a of [7]),
the solid-surface interface remains unsaturated (i.e. with S < 1 atx = L in Fig. 10).
This once again confirms the adequacy of the approach with the relaxing Dirichlet
boundary conditions (the term coined here) instead of the boundary condition (7)
to cases when the penetration of the diffusant already reached the symmetry axis of
the slab while the solutions developed here consider only the initial stages of fluid
diffusion process when §(t) < L.
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Fig. 11 Wood penetration in R e e i e —e =
a stagnant fluid [ Sapwood - methacrylate

unsaturated
(methacrylate) by the - solid - fluid interface
mechanism of capillary el
suction: Results based on the
solution of Kowalski et al.
(Fig.5a in [7]). Note The plot
corresponds to the -
configuration shown in b
Fig. 1; the points correspond
to the solution in [7] but the ¥
lines show only the tendency 02 fp——"" t=4h
in the profile spatial - tz26h o1
development B s I

0.6

fluid - solid interface

4 Final Comments

This chapter addressed a non-linear diffusion model of a practically high relevant
process of special wood treatment by liquids and polymers thus developing new
wood-based materials achieving properties answering many new requirements in the
modern technological world.

The starting point is the mode developed by Kowalski et al. [7] but, in general,
this is a parabolic equation from the class of fast diffusion models with recipro-
cal diffusivities, or in other words with Fujita’s concentration-depended diffusion
coefficients. The model was analysed and the available solution [8] was analysed.
Moreover, the boundary condition used was critically discussed from the point of
view of its physical adequacy.

The approximate solutions developed here address the physical fact that the real
processes of wood impregnation take place in infinite baths of fluids and therefore the
Dirichlet boundary condition is more adequate rather than the flux boundary condi-
tion suggested in [7, 8]. However, taking into account the experimental results in [7]
it was suggested that the classical Dirichlet boundary condition with a unit step of the
saturation at the fluid-solid interface is also a mathematical approximation that con-
flicts with reality since there is no infinite speed of the wood surface saturation. This
point of view resulted in the concept of time-relaxing Dirichlet boundary conditions.
Precisely, this concept envisages a kinetic approach to the wood interface saturation
where the complete Dirichlet boundary condition is attained for long times.

The approximate solutions developed reveal that when relaxing boundary condi-
tions are employed, the final behaviour of the saturation profiles is more physically
adequate and corresponds to the real observations in [7]. Moreover, the concept of
relaxing boundary conditions approaching the unit steps at the solid-fluid interface
is more general and allows formulating physically relevant boundary conditions not



52

J. Hristov

only for the present case of wood impregnation but also for any other processes such
as adsorption or absorption and surfactant adherence of surfactants on solid surfaces.

Last but not the least, it is important to mention that the calculations were per-

formed with stipulated values of the exponent n. This makes the solutions qualitative,
but highly informative because the next step addressing determining the optimal val-
ues of the profile exponent is a more complicated procedure that is beyond the scope
of this study.
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Algorithmic Complexity-Based )
Fractional-Order Derivatives in oo
Computational Biology

Yeliz Karaca® and Dumitru Baleanu

Abstract Fractional calculus approach, providing novel models through the intro-
duction of fractional-order calculus to optimization methods, is employed in machine
learning algorithms. This scheme aims to attain optimized solutions by maximizing
the accuracy of the model and minimizing the functions like the computational bur-
den. Mathematical-informed frameworks are to be employed to enable reliable, accu-
rate, and robust understanding of various complex biological processes that involve a
variety of spatial and temporal scales. This complexity requires a holistic understand-
ing of different biological processes through multi-stage integrative models that are
capable of capturing the significant attributes on the related scales. Fractional-order
differential and integral equations can provide the generalization of traditional inte-
gral and differential equations through the extension of the conceptions with respect
to biological processes. In addition, algorithmic complexity (computational com-
plexity), as a way of comparing the efficiency of an algorithm, can enable a better
grasping and designing of efficient algorithms in computational biology as well as
other related areas of science. It also enables the classification of the computational
problems based on their algorithmic complexity, as defined according to the way the
resources are required for the solution of the problem, including the execution time
and scale with the problem size. Based on a novel mathematical informed frame-
work and multi-staged integrative method concerning algorithmic complexity, this
study aims at establishing a robust and accurate model reliant on the combination of
fractional-order derivative and Artificial Neural Network (ANN) for the diagnostic
and differentiability predictive purposes for the disease, (diabetes, as a metabolic
disorder, in our case) which may display various and transient biological properties.
Another aim of this study is benefitting from the concept of algorithmic complexity to
obtain the fractional-order derivative with the least complexity in order that it would
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be possible to achieve the optimized solution. To this end, the following steps were
applied and integrated. Firstly, the Caputo fractional-order derivative with three-
parametric Mittag-Leffler function («, (3, ) was applied to the diabetes dataset.
Thus, new fractional models with varying degrees were established by ensuring data
fitting through the fitting algorithm Mittag-Leffler function with three parameters
(o, B, 7y) based on heavy-tailed distributions. Following this application, the new
dataset, named the mfc_diabetes, was obtained. Secondly, classical derivative (cal-
culus) was applied to the diabetes dataset, which yielded the cd_diabetes dataset.
Subsequently, the performance of the new dataset as obtained from the first step
and of the dataset obtained from the second step as well as of the diabetes dataset
was compared through the application of the feed forward back propagation (FFBP)
algorithm, which is one of the ANN algorithms. Next, the fractional order deriva-
tive model which would be the most optimal for the disease was generated. Finally,
algorithmic complexity was employed to attain the Caputo fractional-order deriva-
tive with the least complexity, or to achieve the optimized solution. This approach
through the application of fractional-order calculus to optimization methods and the
experimental results have revealed the advantage of maximizing the model’s accu-
racy and minimizing the cost functions like the computational costs, which points
to the applicability of the method proposed in different domains characterized by
complex, dynamic and transient components.

Keywords Computational complexity - Complex systems - Fractional calculus
and complexity * Fractional-order derivatives - Caputo fractional-order derivative *
Classical derivatives - Mittag-Leffler functions + Integer-order derivatives -
Computational and nonlinear dynamics + Mathematical biology + Dynamic
biological models + Data analysis - Data fitting + Uncertainty + Nonlinearity -
Neural networks + Multilayer perceptron algorithm - Data-driven fractional
biological modeling

1 Introduction

Complex systems, characterized by order and homogeneity, hierarchy of subsystems
and different levels both in time and space, entail the observation of the interplay
regarding various multiple biological elements including tissues, cells, molecules
and human body. Given this complexity, it is not sufficient to identify and charac-
terize the individual biological components in the system merely. Thus, in order to
have a complete grasping of the multiple and emergent interactions between bio-
logical components and their respective pathways, mathematical modeling plays
an important role for the solution of complex problems and the application to bio-
logical data so that the correlations between different observable phenomena can
be revealed accurately. Besides such advantage to address the challenges like het-
erogeneity, being dynamic and having intricate characteristics, inherent in complex
systems, mathematical models also allow researchers to explore the degree of com-
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plexity related to processes and the way they are interconnected. Innovative thinking
of modern science enables the interpretation of natural and physical phenomena via
optimized models for the complex systems’ analysis while exerting control for the
related emergent and transient behaviors. Mathematical-informed frameworks are
employed to provide researchers with accurate, reliable and robust understanding.
At this point, fractional-order differential and integral equations procure the general-
ization of traditional integral and differential equations through the extension of the
conceptions with respect to various biological phenomena. Hinting all non-integer
numbers, which include irrational numbers, complex numbers as well as fractions,
“fractional” shows and directs the “fractional view” to gain insights into natural phe-
nomena [1, 2]. Proficiency in computational complexity provides a sophisticated,
multifarious and integrative outlook to problems; that is the reason why applicable
sets of ideas and implementations are put into real life to identify complex dynamic
systems’ subtle properties. One important aspect therein is to accept the varying
degrees of problems so that the models can be constructed in a manner, which can
adjust and fit the matter into the right data, which is another challenge in numerical
and experimental analyses addressed in various domains including neuroscience [3],
biology [4] and so forth.

Biological problems and phenomena, which are modeled by ordinary or partial
differential equations with integer-order, can be described well by using ordinary
and partial differential equations. At each time instance, the correct information can
be measured through a non-integer order derivative; yet, one challenge might be
related to the expression of the dynamics between two different points if the deriva-
tive is in the integer-order. Furthermore, due to having description of memory and
also heredity-related properties, fractional derivatives display another difficulty. It is,
therefore, acknowledged that compared to classical derivatives, fractional derivative
may yield more useful information for the models related to biological diseases.
Being the pillar of different systems in engineering and science, fractional differ-
ential equations are seen in a broad range of disciplines such as mathematical biol-
ogy, physics, engineering, finance, biomechanics, control theory, circuit analysis, to
name some. Any biological phenomenon is inherently characterized by uncertainty
and nonlinearity; and thus, the variables, parameters, attributes, observation states
as well as initial conditions in the model are required for computational purposes.
When incomplete, imprecise or vague elements are existent with regard to parameters
and variables, then errors are inevitably seen in observations, experiments, applica-
tions of different operating conditions or another case is maintenance-induced errors
that are also uncertain in nature. The introduction of such uncertainties is conducted
through fractional-order differential equations as defined in the Caputo sense to attain
reliable, applicable and efficient techniques for the solution thereof.

Fractional Calculus (FC), a swiftly advancing discipline of mathematics with
broad application domains (i.e. applied sciences, computer science, medical, eco-
logical, physical, biological in addition to electricity [5—-8]), refers to the calculus
of derivatives and integrals of arbitrary complex order or real order. FC, there-
fore, provides the noteworthy and viable means to solve integral, differential and
integro-differential equations [9, 10]. As a part of mathematics, fractional-order
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calculus (FOC) addresses derivatives and integration of arbitrary order. For the solu-
tion of various fractional-order biological disease models in uncertain environments,
there are different studies in the literature. Concerning the analytical investigation
of fractional-order biological model, [11] addresses the implementation of iterative
Laplace transform method for the solution of population models of non-integer order.
The authors applied the Caputo operator to express the non-integer derivative of frac-
tional order. The method suggested by the authors is stated to have a small volume of
calculations, which allows its application to manage the various problems’ solutions
with fractional-order derivatives. Another study, namely [12], within the mathemat-
ical modeling of biological systems framework, explores the pathological behavior
of HIV in fractional sense and the model proposed is investigated with three differ-
ent fractional operators. Through the efficient numerical method proposed for the
solutions of the related equations, the models presented are said to have the potential
for the extraction of the new hidden features of biological systems. The new models
provided on the basis of the three operators reveal asymptomatic behaviors, which do
not seem during the modeling with integer-order derivatives; thus, the significance
of fractional calculus is put forth due to its provision of more precise models of bio-
logical systems, allowing more realistic judgments concerning complex dynamics.
Sajjadi et al. [13] is another study that handles chaos control and synchronization
of a biological snap oscillator. By designing adaptive and optimal controllers, the
authors attempted to overcome hyperchaotic behaviors, by compensating the unde-
sirable hyperchaotic behaviors. The study introduces an adaptive control scheme for
the synchronization of two identical snap oscillators. The development of a new frac-
tional model is also presented in that study where efficient control strategies were
employed in fractional sense to do controlling and synchronization effectively. Singh
et al. [14] develop a fractional guava fruit model with memory effect and stability of
the fractional model is discussed, besides the examination of existence and unique-
ness of the solution by using Picard Lindelof approach. The study puts forth the
importance of fractional operators through the consideration of a fractional guava
fruit model that involves a non-local additionally non-singular fractional deriva-
tive regarding the interaction into guava pests and natural enemies. The approximate
numerical solution of the fractional guava fruit problem is obtained by one numerical
scheme suggested which is said to be efficient in terms of solving nonlinear fractional
models of physical importance. With its peculiar complexity features, FOC reflects
natural behavior relatively accurately in various areas (bioengineering [15], biology
[16], electronics [17], image processing [18], control theory [19], robotics [20, 21]
and signal processing [22], as well as viscoelasticity [23]).

Mittag-Leffler functions with one, two and three parameters due to the vari-
ous applications in fractional calculus and fractional differential equations can be
prone to modification on complex plane with the extension of certain fractional-
calculus operators. In the literature, [24] provides the way Atangana-Baleanu and
Prabhakar operators are applied to find fractional derivatives besides the functions’
integrals concerning complex variables. Likely, differing numerical techniques are
used along with the algorithms the Mittag-Leffler function’s numerical evaluation,
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Eop5(z) =Y 100 F(f—iak), a >0, § € R,z e C,and its derivative belonging to the
parameters’ each value o > 0, 8 € R [25]. Dynamic models reflect a system’s tem-
poral aspects through a convenient memory function, resulting in the Mittag-Leffler
waiting time renewal process and rendering the Mittag-Leffler function essential.
Concerning data applications in the related scope, the study [26] addresses the char-
acterization of anomalous diffusion and application of continuous time random walk
(CTRW) theory to diffusion MRI. The authors introduced the CTRW parameters
(v and ) and entropy as the biomarkers for diffusion in biological tissues. In the
CTRW approach presented in the study, the Fourier transform generates a solution
to the generalized diffusion equation which is to be expressed by the Mittag-Leffler
function (MLF). While fitting the data to their model, the fractional-order param-
eters, a and (3, along with the entropy measure, H (g, A), were found to provide
good contrast between white and gray matter, with results yielded sensitive to the
type of diffusion experiment conducted. Jose and Abraham [27] introduces a new
generalized counting process with Mittag-Leffler inter-arrival time distribution. The
model proposed is a generalization of the Poisson process and the authors overcome
the computational intractability through the derivation of the Mittag-Leffler count
model by employing polynomial expansion. Markov Chain Monte-Carlo (MCMC)
methods, using Metropolis-Hastings algorithm, were utilized for the simulation new
count model can be simulated. Another work [28] aims at the exploration a COVID-19
SEIR model that involves Atangana-Baleanu-Caputo type (ABC) fractional deriva-
tives. Besides establishing existence, uniqueness, positivity as well as boundedness
of the alternative model’s solutions, the authors also present the stability results of
the system proposed in their study. Furthermore, [25] is a study that investigates a
new model based on COVID-19 with three compartments that involve susceptible,
infected, and recovered class under the Mittag-Leffler type derivative. A scheme
is also developed for the approximate solutions to the model considered through
the application of a numerical technique named fractional Adams-Bashforth (AB)
method. The study involves the use of some real data available and the authors con-
duct the numerical simulation that corresponds to different values of fractional order.
Sher et al. [29] deals with COVID-19 through the consideration of a fractional-order
epidemic model describing the disease’s dynamics under non-singular kernel type
of the fractional derivative. The fixed point theorem of Banach and Krasnoselskii’s
type is discussed, and the simulated results are compared with some of the real data
reported for commutative class at classical order.

Making predictions based on mathematical models concerning biological pro-
cesses and datasets necessitates the estimation of parameters step for the model’s
simulation. Thus, fitting parameters to experimental data is regarded as a challenge
due to the fact that finding the model parameters’ optimal values could require the
exploration of a huge space while the model parameters’ different values may display
consistency with the data, known as identifiability problem accordingly, [30, 31] deal
with the related problematic aspects in systems biology through different approaches.
As for the algorithm, maintaining the best fit to the data as much as possible is impor-
tant while eliminating the parameters from the model in a manner that will not impact
the optimal fit, which means that there has to be a trade-off between goodness of
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fit and model complexity as measured by the function of likelihood. Kiiveri [32], to
illustrate, provides comparison with support vector machines and random forests.
The advantage of variable selection and parameter estimation is at stake without any
extra steps required to obtain a sparse model. Another important point regarding data
fitting is that parameters may not have any biological meaning if the model selected
is not informative. Concerning this point, [33] states that model parameters fit to bio-
logical processes have to be stable; whereas transferability of parameters is proposed
by [34] for utility purposes with a high level and biological significance. To recap,
goodness of fit and biologically meaningful parameters in model selection can ensure
the identification of an effective model with a model selection process considering
only the best fit. Adams et al. [34] point out this aspect in thermal optima and max-
ima, demonstrating that the biologically meaningful parameters have the facilitating
function. Zhao et al. [35] also address the clustering challenge in big medical and
biological datasets by developing a three-topic model-derived clustering methods,
showing the application benefit of topic modeling as well as an analytic enhancement
of the topic model-based methods. Albrecher et al. [36] define the class of matrix
Mittag-Leffler distributions, studying some of its properties. The authors demon-
strate that it can be interpreted as a specific case of an inhomogeneous phase-type
distribution with random scaling factor and as the absorption time of a semi-Markov
process with Mittag-Leffler distributed interarrival times. Both simulated data and a
set of real-life data modeled differently in the previous times are used in the study.
Being credited as a natural mathematical model for power-law relations, fractional
calculus, enables the observation of related links as accurate descriptors regarding
natural phenomena. The application of fractional calculus to artificial neural net-
works (ANNs) provides significant advantages by providing the augmentation of a
neural network (NN) through the implementation of differintegral operation based
on fractional calculus to the data stream via each of the neurons in the neural net-
work. It is, thus, possible to achieve achieved fitness, behavioral differences as well
as related simulation-specific metrics through the related experimental processes.
Fractional calculus approach to machine learning provides a novel method through
the introduction of fractional-order calculus to optimization methods as employed
in machine learning algorithms. It is, therefore, intended to maximize the model’s
accuracy and minimize the cost functions like the computational costs. Including
ANN:g, in all the machine learning algorithms, learning is a crucial step with respect
to accuracy or convergence rate, obtained potentially by the use of fractional-order
gradient in the area of data science. One of the related studies, [37], uses a model of a
neural network with a new backpropagation rule employing a fractional-order deriva-
tive mechanism. The proposed scheme, by using the Griinwald—Letnikow definition
of the discrete approximation of the fractional derivative, employs the fractional
derivative mechanism to model the individual neurons’ dynamics and to minimize
the error function least. The network model proposed in the study is a new tool that
could be utilized in the classification tasks of signals. One other study [38] has the
aim of investigating the handling of the fractional vibration problem utilizing the
multilayer artificial neural network (ANN) method. Fractional derivatives yield bet-
ter models regarding the vibration systems in contrast with classical integer-order
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models. The authors employed multilayer feed-forward neural architecture and error
back-propagation algorithm with unsupervised learning to minimize error function
as well as to modify the parameters (weights and biases). Kadam et al. [39] deal
with ANN approximation of fractional derivative operators. The input-output data of
Griinwald—Letnikov as well as Caputo fractional derivatives for a range of functions
such as power law type, sinusoidal, ramp and Mittag-Leffler functions are used for
the training of multilayer ANNs. Last but not least, based on the ANNs based on
fractional calculus, [40, 41] propose a fractional-order deep backpropagation neural
network model with L, regularization. The authors optimize the proposed network
by the fractional gradient descent method with Caputo derivative while showing the
required conditions for the convergence of the network proposed. The influence of
L, regularization on the convergence is analyzed with the fractional-order variational
method. The experiments performed on the dataset demonstrate that the proposed
network is deterministically convergent and capable of avoiding overfitting in an
effective way.

The conceptual aspects of algorithms and complexity become meaningful pro-
vided that they are defined in terms of formal computational models [42]. Computing
is essential to address intensive data tasks and attain scalable solutions to complex
problems. Therefore, it is important for researchers and developers to be cognizant of
effects of computational complexity and its theory for better grasping and designing
of efficient algorithms in computational biology. Given that, it is possible to clas-
sify the computational problems depending on their algorithmic complexity defined
according to the way the resources required for the solution of the problem, includ-
ing the execution time and scale with the problem size. Algorithmic complexity,
called complexity or running time, is a way of comparing an algorithm’s efficiency.
For a particular task, an algorithm completing a task is regarded as more complex
if more steps are involved. Varying in relation to the size of the input, complexity
can be expressed with the Big O notation. Thus, complexity can be measured with
regard to the time it takes for a program to run in relation to the size of the input,
which is referred to as time complexity, or with regard to the memory it will take up,
called space complexity. In computational biology, the investigation of algorithmic
complexity provides guidance with regard to the application of efficient programs
to process, model and analyze biological data [43]. Algorithmic complexity theory
from the computer science perspective enables an individual to examine algorithms’
properties to solve computational problems as well as the relationship between the
size of an instance of the generic problem and the time needed for computation [44].

Based on a novel mathematical informed framework and multi-staged integra-
tive method concerning algorithmic complexity, no earlier work exists equivalent
to this study in the literature [32—44], as derived from such a holistic perspective
with the methods proposed. The preliminary objective of this study is to establish a
robust and accurate model based on the combination of fractional-order derivative
and Artificial Neural Network (ANN) for the diagnostic and differentiability pre-
dictive purposes for the diseases (diabetes dataset in our case) which may display
various and transient biological properties. In addition, we have also aimed to benefit
from the concept of algorithmic complexity in order to obtain the fractional-order
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derivative with the least complexity so that it could be possible to reach the optimized
solution. To this end, we implemented the following steps: (i) The Caputo fractional
derivative was applied with three-parametric Mittag-Leffler function to the diabetes
dataset. In this way, new fractional models with varying degrees were established by
ensuring data fitting through the Fitting algorithm Mittag-Leffler function with three
parameters («, (3, v) based on Heavy-tailed distributions. (By applying Algorithm
1 (Fitting algorithm Mittag-Leffler function with three parameters («, 3, ) based
on Heavy-tailed distributions.) to the diabetes dataset, in order to identify the opti-
mized three-parametric ML function, ML («, 3, ) parameters that fit the data were
found with heavy-tailed distributions. Thus, the optimized ML («, /3, ) functions
were obtained. In other words, this application allowed us to find the best fitting
Mittag-Leffler function with three parameters («, [, ) in the diabetes dataset). The
reason and motivational aspect behind the choosing of the Mittag-Leffler function is
that this function directs the distributions of broad application areas, which makes
it possible to address irregular and heterogeneous environments for the dynamic
problems’ solution. Following this particular application, the new dataset, named
mfc_diabetes, was obtained. (ii) Classical derivative (calculus) was applied to the
diabetes dataset (namely the raw dataset); and accordingly, the cd_diabetes dataset
was obtained. (iii) The performance of the new dataset as obtained from the Caputo
fractional-order derivative with the three-parametric Mittag-Leffler function (based
on step i), the dataset obtained from the classical derivative (calculus) application
(based on step ii) and the diabetes dataset (ie: raw dataset) was compared through
the application of the feed forward back propagation (FFBP) algorithm, which is
among the ANN algorithms (along with accuracy rate, sensitivity, precision, speci-
ficity, F1 score, multiclass classification (MCC), ROC curve). Consequently, the
fractional-order derivative model that would be the most optimal for the disease was
generated, which makes up another motivational and novel aspect of the method
proposed in our study. (iv) We benefited from the concept of algorithmic complexity
to attain the Caputo fractional-order derivative with the least complexity, in other
words, to achieve the optimized solution. This approach through the application
of fractional-order calculus (FOC) to optimization methods has the advantage of
maximizing the model’s accuracy and minimizing the cost functions like the compu-
tational costs. Thus, algorithmic complexity was computed with the application of
Caputo fractional-order derivative with three parametric Mittag-Leffler function and
classical derivative (calculus) in a comparative way by identifying the complexity
for each concerning the diabetes dataset. As a result, the derivatives with the highest
and lowest level of complexity were identified with Big O. The experimental results
obtained from our integrative and multi-stage approach corroborate the applicability
of the scheme proposed through this study by revealing the Caputo fractional-order
derivative with the least complexity yielded the best outcome based on the output
derived from the ANN algorithm (FFBP).

The remainder parts of the study are outlined as follows. Section 2 is concerned
with Biological Dataset and Methodology, with Sect. 2.1 on Diabetes Dataset and
Sect. 2.2 methodology dealing with Mittag-Leffler Functions with Heavy-tailed dis-
tributions’ Algorithm for Data Fitting Purposes, Caputo Fractional-order Deriva-
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tives, Artificial Neural Networks Algorithm as well as Algorithmic (Computational)
Complexity. Section 3 is entitled Experimental Results and Discussion. Finally, the
last section, which is to say Sect. 4, presents the Conclusion, Outcomes and Future
Directions of our study.

2 Biological Dataset and Methodology

2.1 Diabetes Dataset

The accurate interpretation of data is important for a complete understanding emerg-
ing properties resulting the interplay of multiple biological elements in complex
biological systems. Therefore, it would not be adequate to characterize only the indi-
vidual biological components in the system. Thus, accurate and appropriate mathe-
matical modeling plays an important role to serve the investigation of problems since
mathematical models enable us to explore how complexity processes and disruptions
related to these processes influence the disease. This study addresses one biological
dataset, diabetes, with dynamic, heterogeneous, and complex characteristics that are
common diseases that need to be taken under meticulous control so that detrimental
effects would not be the case for the future.

For the classification and prediction of diabetes disease, the variables of Under-
weight (18.5-), Healthy (18.5-25), Overweight (25-30) or Obese (30+) are taken
into consideration on the body mass indices of the related individuals. As per this
variable code interval, the insulin values ranging from 16 to 166 are accepted to be
normal, whereas the values out of this interval are regarded as not normal. More-
over, the glucose values are taken as Low (70-), Normal (70-99), Secret (99—-126)
and High (126-200) for the classification (see Table 1 for the details of the diabetes
dataset) [45].

2.2 Methodology

2.2.1 Mittag-Leffler Functions with Heavy-Tailed Distributions’
Algorithm for Data Fitting Purposes

Mittag-Leffler functions with three parameters

Special function is one of the domains of mathematical analysis, associated with dif-
ferent topics like fractional calculus, differential equations and mathematical physics
[44]. With its extensions, Mittag-Leffler function is among the noteworthy classes of
special functions [45]. Due to the connections to fractional calculus, and fractional
exponential functions, arising in solutions for the different fractional differential
equations, they are known to be useful [46, 47].
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Table 1 Diabetes dataset with attributes computed in unit

Diabetes classification Attributes (units)
Body mass index (BMI)
(weight in kg/(height in m)?)

Age

(years)

Diastolic blood pressure

(mm Hg)

Skin thickness

0 = Non-diabetes Triceps skin fold thickness (mm)

1 = Diabetes Insulin

2-h serum insulin (mu U/ml)

Number of pregnancy

Diabetes pedigree function

(a function that calculates the probability
that an individual may be afflicted with
diabetes based on the genetic disposition)
Plasma glucose

(Concentration a 2-h interval in an

oral glucose tolerance test)

* Dataset size: (768 x 9)

The original function of Mittag-Leffler E,(z) depends on one single variable z
nd one parameter «, described as per Eq. 1 [48].
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Different ways are the case to extend this definition, the most known extensions
are the functions. E] 5 (2), being reliant upon variable z and three parameters with
definitions as stated below [49, 50].
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Heavy-Tailed Distributions

Mittag-Leffler distribution

Denoted as E,(y), Mittag-Leffler function was defined by Pillai [51], stating its
dependence upon the distribution function or cumulative density function (cdf), indi-
cated according to Eq. 3 [52].
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o0
fia)=1—E,(—y) = kzl (DT x> 0,0<a<1 (3)

As a heavy-tailed distribution, Mittag-Leffler av = 1, reduction to exponential
distribution is conducted with mean 1. Itis addressed as the exponential distribution’s
generalization. References [53—55] have addressed the varying characteristics of this
distribution, proposing a class of discrete Mittag-Leffler distribution with the function
of producing probability (pgf) P (z) = E (X?) =1/ [l +c(1 — z)a].

MLFD is a flexible distribution with different shapes, for example, those like
non-increasing pattern with unique mode at, unimodal one with one or two non-
zero modes. There also exist some different distributional properties, for instance,
the recurrence relation with regard to probability distribution function (pdf), cdf,
index of dispersion, classification, producing functions, formulae for different type of
moments besides reliability properties as well as increasing failure rate, unimodality,
survival and stochastic ordering.

Pareto distribution

As a random variable, Pareto distribution Pp [56] is followed by the Pareto distri-
bution providing that it possesses the pattern of tail which is provided as follows
[57]:

_® U<b
R PR

“)
a and b denote the scale and shape parameters, in respective order, with 1 and 1
values.

Cauchy distribution

As a random variable, the Cauchy distribution [58] is followed with the tail formula
formulated as per Eq. 5:

Cp (U) = %arctan (wT_“> n % )

b and u are the denotations of the scale and location parameters, in respective order
with 1 and O values.

Weibull distribution

As a random variable, the Weibull (Wp) [59] is to follow the Weibull providing the
tail formula is taken according to Eq. 6 [52-68].

Wp (U) = exp(f)’ ©)

k and £ correspond to scale and shape parameters. With ¢ having values, less than
1, the Weibull distribution is said to be heavy-tied. The k and ¢ values are taken as
land 1 [51].

The comparison of the Mittag-Leffler distribution, Pareto distribution, Cauchy dis-
tribution and Weibull distribution has been done with respect to their performances,
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through the utilization of the log likelihood value (MLE) and the Akaike Information
Criterion (AIC). Their related definitions are as such.

AIC = —21nL + 2k, here k denotes the number of parameter(s) and L refers
to the maximum log-likelihood concerning a specific dataset [19]. In addition, the
applications of the following have also been performed: standard deviation (SD),
mean absolute error (MAE), mean absolute percentage error (MAPE), sum of the
square error (SSE), mean squared error (MSE) and root mean squared error (RMSE)
(for theoretical aspects and other related details please see Refs. [60, 61].

Comparatively high (small) values of log likelihood (AIC) can suggest better
fittings, which are outlined in Table 2 for Pareto distribution, Weibull distribution,
Mittag-Leffler distribution and Cauchy distribution, respectively, yield, in an evident
way, the best of the fit in the related order. Furthermore, the performance of the
likelihood ratio test is also addressed so that MLFD Mittag-Leffler distribution,
Cauchy distribution, Pareto distribution, Weibull distribution can be differentiated
(see Table 2).

Mittag-Leffler function’s numerical evaluation with the default accuracy set has
the 10~* the Matlab routine [62]. The function of Matlab f = gml_fun(a, b, c,
x, eps0) addresses a generalized Mittag-Leffler function [63, 64].

Figure 3 is plotted for the functions, Pareto distribution, Weibull distribution,
Mittag-Leffler distribution and Cauchy distribution, which have been computed by
Matlab pattern of [ | = gm/_fun ( ) which was made for the Mittag-Leffler func-
tion’s evaluation [63, 64].

The fitting of the biological datasets in this study as based on the Mittag-Leffler
function with two parameters (v, (3, ) relying on heavy-tailed distributions is a criti-
cal step in this process for the investigation of the complex attributes. The application
steps for this investigation are presented in Algorithm 1 (for further related details,
see [65]).

Algorithm 1: Fitting algorithm Mittag-Leffler function with three parameters
(o, B, v) based on Heavy-tailed distributions.

Step 1: Beginwithaa =1; f=1and v=1mif (1,1,1) = €° as the most
basic form of Mittag-Leffler function with three parameters.

Step 2: Fitting mlf (1, 1, 1) in the following respective integer-order for: Mittag-
Leffler distribution, Cauchy distribution, Pareto distribution, Weibull distribution.

Step 3: Do the calculation of the maximum likelihood estimation with MLE, AIC,
SD, MAE, MAPE, SSE, MSE, RMSE.

Step 4: For § = 1 (constant),« = 0.1,0.5,...,7,10andy = 0.1,0.5,...,7, 10
the values are chosen accordingly for values of «; hence, the MLE, AIC, MLE, AIC,
SD, MAE, MAPE, SSE, MSE and RMSE values are calculated as in Step 3 and the
comparison of values is performed.

Step 5: For a = 1 (constant), 3 = 0.1,0.5,...,7,10andy = 0.1,0.5, ...,7, 10
the values are chosen accordingly for values of 3; hence, the MLE, AIC, MLE, AIC,
SD, MAE, MAPE, SSE, MSE and RMSE values are calculated as in Step 3 and the
comparison of values is performed.

Step 6: For v = 1 (constant), « = 0.1,0.5,...,7,10and 3 = 0.1,0.5,...,7, 10
the values are chosen accordingly for values of 3; hence, the MLE, AIC, MLE, AIC,
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SD, MAE, MAPE, SSE, MSE and RMSE values are calculated as in Step 3 and the
comparison of values is performed.

Step 7: Based on the different values of «, 3 and y as chosen, the best fit values
are taken.

Step 8: Based on the procedure in Step 7, the calculations are performed distinc-
tively and individually for all the heavy-tailed distributions (Mittag-Leffler Function
distribution, Cauchy distribution, Pareto distribution, Weibull distribution) and com-
parative analyses are performed.

Through this algorithm (Fitting algorithm Mittag-Leffler function with three
parameters («, [3, v) based on Heavy-tailed distributions) applied to the diabetes
dataset, in order to identify the optimized three-parametric ML function, ML («, 3, )
parameters that fit the data were found with heavy-tailed distributions. The optimized
ML («, (3, y) functions were, thus, obtained. This application, in a way, allowed the
finding of the best fitting Mittag-Leffler function with three parameters («, (3, 7y) in
the diabetes dataset.

Fractional-Order Derivatives
To comprehend the fractional calculus definitions and their uses, it is important
that one is familiar with the particular mathematical explanations. Among these
are the Gamma functions, Beta functions, Laplace transforms and Mittag-Leffler
functions. Mittag-Leffler function is a critical function in mathematics with broad
areas of application in fractional differential method. Mittag-Leffler function is also
important in terms of differential equations theory depending on the exponential
function as in integer-order.

The subsequent power series are employed for the definition of the Mittag-Leffler
function, which is convergent in the entire complex plane [22]:

E . (z) = ioj - (=2)"
a,f 0 n ‘T(na+5)

o
I'(y+n) "
=) FoTmars & 6,6 >0,zeC

(7

As an entire function, it allows a simple generalization of the exponential function.
Itisreduced fora = 1 and 3 = 1. About the convergence of power series in Eq. 8, the
two parameters and possess the likelihood of being complex providing R (o) > 0,
N (B) > 0and N () > 0. The asymptomatic expansion of Mittag-Leffler is another
interesting property signified as z — oo in the different sectors of the complex plane
[66].

Ordinary fractional differential equations are solved clearly through the Mittag-
Leffler function, its generalized forms and relevant special functions. The role of
the Mittag-Leffler function becomes more conspicuous in the solution of ordinary
FDEs. The most expansively used definitions of fractional derivatives are Riemann,
Liouville, Caputo and Griinwald-Letnikov. The two approaches are conducted for
their introduction: the former one is dependent on the inversion of the generalization
of the integer-order integral. The second approach is reliant on a more direct gen-
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eralization of the limit of the difference quotients defining integer-order derivatives
[67].

When a physical system is ruled by the fractional differential equation of Eq. 8
(60, 61],

aDly (1) = f (1) ®)

zero initial condition is under consideration and the Laplace transform specified in
the aforementioned part provides the following Eq. 9:

Y(s) 1

GI(S)ZU(S)_E

€))

Equation 9’s inverse Laplace transform yields another equation specified in Eq.
10.

a—1

g1 =~ (10)

al (o)

Equation 10’s inverse Laplace transform yields another equation specified in Eq.
11.

a—1

g1 (1) =~ (1)

al (o)
Equation 11 is regarded as the impulse response of the system’s transfer function
model G (s). When one extends the concept for the two term differential equation,
then the related structure will be according to Eq. 12 [66, 67]:

aD'y (t) + by (t) = f (1) (12)

A similar Laplace operation with zero initial condition produces the system’s
transfer function based on Eq. 13.

G-+ __1 1 1 (13)
UGs) as“+b a'sﬂ—l-g

The inverse Laplace of Eq. 13 lets the gaining of the following indication according
to Eq. 14.

1 b
g ) =—1""Eqo|——1" (14)

a a
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Caputo Fractional-Order Derivatives
Being preferred for the solution of differential equations, the Caputo definition is
denoted according to Eq. 15 [22, 67]:

R B S LaXcs
Dmf(t) - F(m —Oé) / (l _T)(x-ﬁ-l—md’r’ (15)
0

That the Griinwald—Letnikov fractional derivative resembles Caputo fractional
derivative is proven, with regard to the majority of the analytic functions. One slight
different aspect is detected during the handling of the constant function. For a con-
stant, the Caputo fractional derivative is zero; and yet, its Riemann-Liouville coun-
terpart is not zero. Caputo fractional derivative is usually utilized for addressing the
initial value fractional ordinary differential Equation 23.

The essential results on fractional integral and derivatives of the power function
(t — 1) for, [ > —1 are the case and for the Caputo’s derivative, and in this regard,
Eq. 16 is used as follows:

0 6e€f0,1,....m—1}
DLt —10) = | 75— 1) B>m—1 (16)
nonexisting otherwise

When there is an absence of Caputo’s derivative of (# — 10)” for real B<m—1
with3 ¢ {0, 1, ..., m — 1} connected with the fact that when m — th order derivative
of (t — t9)? is evaluated, the integer as per Eq. 17 is not integrable as with Eq. 16.

DS (1) :=J"D"f (1)

; m—a—1 fm 17
= F(mlfa) J@—7) LFm(rydr, t> 1 a7
fo

D™ and f denote the integer-order derivatives [68].

Unlike the Riemann-Liouville derivative, the Laplace transform for the Caputo’s
derivative is initialized with the standard initial values signified in terms of integer-
order derivatives.

As amatter of fact, the definition of Caputo’s derivative and Griinwald—Letnikov’s
derivative show consistency with the definition of Riemann-Liouville derivative,
hinting that Griinwald-Letnikov positive non-integer order derivative definition is
consistent with the Riemann-Liouville positive non-integer order derivative defini-
tion as an inference [57].

Artificial Neural Networks Algorithm

Neural networks are built depending on simple units that are connected with each
other by a set of weighted connections. Generally speaking, such units own their
structure and organization in the form of layers; and in that organization, each unit
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Input Layer Hidden Layer Output Layer
‘ . Predicitions

Fig. 1 The general network structure of the FFBP algorithm

of the first layer, in other words the input layer, signifies a feature of a pattern
that will be considered for analyzing purposes. The units with respect to the last
layer, which is to say, the output layer, generates a decision, subsequently, after the
information propagation; so artificial neural networks (ANNs) are computational
systems, which are inspired by biological neural networks that mimic the animals;
brains. The procedure employed towards the learning process in a neural network
is called the training algorithm. In this regard, Feed Forward Back Propagation
algorithm is among the ANN algorithms [69].

Being among the most commonly utilized artificial neural networks, feedforward
neural network is an artificial neural network with inter-unit connections that do not
form a cycle [70]. With this aspect, it is different from the recurrent neural networks.
The feedforward neural network is the first and simplest type of artificial neural
network devised. Information moves only in one direction; and thus, no loops or
cycles are existent in the network [70]. The network architecture of the algorithm
is defined and the weights are involved [70, 71]. When the input examples with
m-dimension are entered, x; = [x;, X2, ..., x,,]” can be observed. Correspondingly,
the output examples for n-dimension are noted by d, = [d,, d», . .., d,]” (seeFig. 1).
x; values, the output values of the neurons in the ith layer (n), the total input that
will correspond to a neuron in j layer is performed according to Eq. 18 [70-74] (see
Fig. 1).

net; :Zwin,» (18)

The j neuron’s output (namely transfer function input), which is in the hidden
layer, is calculated as per Eq. 19 [70]

vi=fi(net) j=1.2,....7 (19)

The total input corresponding to k neuron in the output layer is calculated as per Eq.
20:
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J
nety = Z Wg;j.yj (20)
j=1

The calculation of the non-linear output of a k neuron in the output layer is performed
based on Eq. 21 [70, 74].

o= fr(nety), k=1,2,...,n 201

Based on the comparison of the output obtained from the network and actual output,
the calculation of the ¢; error is done according to Eq. 22 [70, 74].

e = (dk — Ok) (22)

Dy shows the target of any k neuron, which is in the output layer and Oy shows the
outputs obtained from the network. The updating of the weights that are obtained
from the output layer is also done, and the performance of the total square error
calculation is conducted according to Eq. 23 for each of the examples:

1
E = E; (dk — Ok)z (23)

In this study, FFBP algorithm was applied to the diabetes dataset (768 x 9) for
the diagnostic and predictive purposes of the disease classification.

Algorithmic (Computational) Complexity

Big-O notation, as a simple mathematical formula, provides the rough approximation
or placing of an upper bound on the resource requirements for an algorithm depending
on the size of the input-the complexity of the algorithm, refers to the algorithmic
complexity. In technical aspects, algorithmic complexity is able to and supposed to
apply to both space and time (storage and memory) resource requirements. What
most are interested in is the running time of an algorithm [75, 76].

Algorithmic complexity is stated with the term of “on the order of’, which indi-
cates the rough or approximate cost of the algorithm in terms of resource require-
ments. “on the order of’ is abbreviated as a capitalized “O”, which provides the more
known term which is the Big-O notation.

The form of Big-O notation is: O (formula)

In which, the formula is mathematical expression that is reliant on the input
parameters or size of the input data for the algorithm. The input size is often denoted
in the formula with a lower-case “n”.

A brief presentation of the common forms of Big-O notation, in increasing order
of cost and decreasing order of performance contain:

O(1) or O(k): Constant. Great, fastest, easy, simple, trivial,

O(log n): Logarithmic. Non-trivial yet really manageable.

O(n log n): Linearithmic. Not quite as good as linear, yet not that bad.
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Fig. 2 The order of growth for algorithms as indicated in Big-O notation

O(n?): Quadratic. Approaching somewhat expensive, yet not terrible.

Big-O notation is a prominent notation used for the representation of algorithmic
complexity. By providing an upper bound on complexity, it expresses the algorithm’s
worst-case performance in a way. Through this notation, it will be convenient to
compare different algorithms since the notation yields apparently the expression of
how the algorithm scales as the input size gets bigger, which is often termed as the
order of growth (see Fig. 2) [76].

The Fast Fourier Transform (FFT)

The problem regarding the Fourier transform is due to its sine/cosine regression
model form or its complex exponential form, which requires O (n?) operations for the
computation of all the Fourier coefficients. Each frequency coefficient necessitates
the multiplication of a summing a cosine or sine with all the data points. Regarding
short-time series, this is not the case. However, for time series that are very long, this
can be a costly computation even though they are to be conducted on the computers
of the current era.

The Fast Fourier Transform (FFT), as a way to reduce the complexity of the Fourier
transform computation from O (n?) to O (nlogn), is an important improvement [77].
The primary version of the FFT is one with Cooley and Tukey. The basic idea is that:

Suppose, there is a time series yy, .. ., ¥, and one wishes to compute the complex
Fourier coefficient z;. Through the formula, this shall require the computing of:

n—1
20 = Z Yi»
t=0
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That is proportional to the mean of the data. If the data were de-meaned or de-
trended, then this shall be zero. The next Fourier coefficient is, then,

n—1

z1 = Y. yyexp(—2mi.l.t/n)
=0

= ypexp(—2mi.1.0/n) + y, exp(—2mi.1.1/n) + y, exp(—27wi.2.1/n) + - -

At this point, assume that one wishes to compute the new coefficient z;. Then,
this would require the computing:

72 = yoexp(—27i.2.0/n) + y; exp(—27i.2.1/n) + - - -

The exponential in the second term in the sum for is the same as the exponential in
the third term in the sum for z,, which are equal to exp(—2mi.1.2/n). There is not any
need for the computation of this exponential quantity tow times, so it is possible to
compute it for the first time, storing it in memory, then retrieving it when it is required
to compute z, (assuming that retrieving from memory is faster than computing it from
scratch). One can think of the FFT algorithm as an elaborate bookkeeping algorithm
that keeps track of these symmetries in computing the Fourier coefficients.

3 Experimental Results and Discussion

Mathematical-informed modeling of complex systems by fractional order derivatives
based on fractional calculus is important in order to be able to attain the related
syntheses in an effective and robust way. In view of that, our study aims to establish a
robust and accurate model based on the combination of fractional-order derivative and
Artificial Neural Network (ANN) for the diagnostic and differentiability predictive
purposes for the diseases which manifest various and transient biological properties.
Moreover, another aim is to show the benefit of the concept of algorithmic complexity
to obtain the fractional-order derivative with the least complexity in order that it
would be conceivable to reach the optimized solution. To this end, the integrative
multi-stage approach proposed in this study includes the steps outlined as follows:
(1) The Caputo fractional derivative was applied with three-parametric Mittag-
Leffler function to the diabetes dataset. Thus, new fractional models with varying
degrees were established by performing data fitting with the Fitting algorithm Mittag-
Leffler function with three parameters («, 3, ) based on Heavy-tailed distributions.
(By applying Algorithm 1 (Fitting algorithm Mittag-Leffler function with three
parameters («, 3, v) based on heavy-tailed distributions.) to the diabetes dataset,
to identify the optimized three-parametric ML function, ML («, (3, y) parameters
that fit the data were found with heavy-tailed distributions. In this way, the opti-
mized ML («, 3, 7v) functions were obtained. This application allowed the finding
of the best fitting Mittag-Leffler function with three parameters (c, (3, y) in the dia-
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betes dataset). After this particular application, the new dataset, mfc_diabetes, was
obtained.

(ii) Classical derivative (calculus) was applied to the diabetes dataset (namely the
raw dataset); and accordingly, the cd_diabetes dataset was obtained.

(iii) the performance of the new dataset, as obtained from the Caputo fractional-
order derivative with the three-parametric Mittag-Leffler function (as per step i), the
dataset obtained from the classical derivative (calculus) application (as per step ii) and
the diabetes dataset (ie: raw dataset) was compared through the application of the feed
forward back propagation (FFBP) algorithm, one of the ANN algorithms (along with
accuracy rate, sensitivity, precision, specificity, F1 score, multiclass classification
(MCC), ROC curve). As a result, the fractional-order derivative model, the most
optimal one for the disease, was generated.

(iv) Algorithmic complexity was addressed to achieve the Caputo fractional-order
derivative with the least complexity and with the optimized solution. Hence, algo-
rithmic complexity was calculated with the application of Caputo fractional-order
derivative with three parametric Mittag-Leffler function and classical derivative (cal-
culus) in a comparative way by identifying the complexity for each concerning the
diabetes dataset. The derivatives with the highest and lowest level of complexity
were identified with Big-O. The experimental results obtained from our integrative
and multi-stage approach demonstrate the applicability of the scheme proposed in
this study by showing that the Caputo fractional-order derivative with the least com-
plexity has yielded the best end result based on the output derived from FFBP.

All the analyses and results obtained as well as the visual depictions performed
have been obtained by [78] and Phyton [79].

3.1 Application of Mittag-Leffler Functions with
Heavy-Tailed Distributions’ Algorithm for Data Fitting
Purposes

By applying Algorithm 1 (Fitting algorithm Mittag-Leffler function with three param-
eters («, [3, v) based on Heavy-tailed distributions.) to the diabetes dataset, in order
to identify the optimized three-parametric ML function, ML (a, (3, y) parameters
that fit the data were found with heavy-tailed distributions. Thus, the optimized ML
(o, B, 7y) functions were obtained. In other words, this application allowed us to find
the best fitting Mittag-Leffler function with three parameters (¢, 3, ) in the diabetes
dataset.

Algorithm 1 Fitting algorithm Mittag-Leffler function based on heavy-tailed dis-
tributions has been applied to the diabetes dataset (768 x 9) for the nine attributes in
units (number of pregnancy, plasma glucose, diastolic blood pressure, skin thickness,
insulin, body mass index (BMI), diabetes pedigree function, age) (see Table 1 for
further details).
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Applications for Fitting Mittag-Leffler function based on heavy-tailed distribu-
tions to diabetes dataset (Number of pregnancy, plasma glucose, diastolic blood
pressure, skin thickness, insulin, body mass index (BMI), diabetes pedigree function,
age) were conducted concerning the related attributes. The log likelihood value and
the Akaike Information Criterion (AIC) were computed as per the fitting to Mittag-
Leffler distribution, Pareto distribution, Cauchy distribution and Weibull distributions
(Step 2 carried out as per Algorithm 1) for all the attributes of diabetes dataset along
with the different values of Mittag-Leffler function with three parameters (c, (3, ).
Accordingly, Mittag Leffler functions were attained for all the significant attribute
values (Step 3 carried out as per Algorithm 1).

Concerning the analyses, negative log likelihood: -log L was taken for the log
likelihood value. By taking the log likelihood value, the maximum value, the distri-
bution that is best fit is obtained. The best fit distribution is generated as retrieved
from the Akaike Information Criterion (AIC) calculations. Negative log likelihood:
in -log L gives the best fitting minimum value in the distribution, therefore, negative
log likelihood was taken in the analyses. Hence, the lowest of the both values were
taken and the best fitting distribution was achieved so that the ML functions which
represent the data most suitably were obtained (Step 4 performed as per Algorithm 1).
The lowest value was taken for each distribution; the computations were conducted
for all the nine attributes. For the purpose of setting an example, presentations for one
attribute, namely the body mass index (weight in kg/(height in m)?, are indicated in
Table 2). Thus, the lowest value obtained is indicated in bold in the related tables. The
figure depictions as per the calculations obtained from the aforementioned attribute
presented in the table show the distribution and also its peak points (see Fig. 3).

Table 2 provides the body mass index (weight in kg/(height in m)? attribute indi-
cating the lowest value (indicated in bold) taken for each heavy-tailed distribution

The depictions as per the calculations obtained from the attributes presented in
Table 2 for the Body mass index (weight in kg/(height in m)? attribute the heavy-tailed
distributions (Mittag-Leffler distribution, Cauchy distribution, Pareto distribution,
Weibull distribution) and its peak points are displayed in Fig. 3.

Two approaches exist regarding the handling of each diabetes dataset attribute
to conduct the analysis mentioned above. The first approach is that for the results
obtained from each distribution as per Algorithm 1 (based on the «, 3 and  values),
the most accurate distribution is achieved as per the results as have been obtained
with the lowest value. The latter approach includes the addressing of the outcomes
based on «, [ and ~ values according to the results generated by the four heavy-
tailed distributions (namely Mittag-Leffler distribution, Cauchy distribution, Pareto
distribution, Weibull distribution) in conjunction with MLE, AIC, SD, MAE, MAPE,
SSE, MSE and RMSE) while at the same time making the comparison of the related
attributes (see Table 3 for further details) between themselves; and additionally, the
most accurate distribution is obtained as per the results attained with the minimum
value. If there existed extreme points within the distribution, then those extreme
values were not taken into account for the analyses performed in our study.

As per the applications in Algorithm 1, the diabetes dataset in line with the ML
function, the best fit values are found to be as MLF(10,2,2).
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Fig. 3 The body mass index (weight in kg)/(height in m)? attribute computation based on diabetes
dataset for Mittag-Leffler function based on Heavy-tailed distributions

3.2 Application of Caputo Fractional-Order Derivatives with
Three Parametric Mittag-Leffler Functions to Diabetes
Dataset

Algorithm 2 presents the application steps of fractional derivatives on datasets with
non-integer orders accordingly for the diabetes dataset. Algorithm 2 serves the iden-
tification of the order degree, which identifies the most significant attribute. In this
way, the fractional derivation function is formed.

Algorithm 2: Fractional derivatives application on dataset with non-integer
orders.

Step 1: set non-integer orders (y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9)).

Step 2: For the y order fractional derivatives that have been identified in Step 1,
all the orders are applied to the attributes distinctly in the dataset. Consequently, z
values are obtained.

Step 3: Print 3D graphs of three types of derivatives as grid and surface (x, v,
z)=(for each attribute of the data u, «, derivative of all the data).

Algorithm 3 provides the application steps of Caputo fractional derivatives on
the diabetes dataset (see Table 1). The most significant orders have been obtained as
per the application of the procedures stated in Fig. 4, and for these orders, Caputo
fractional-order derivative models have been identified, as elaborated with the results
obtained accordingly.
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Fig. 4 Computational application of Caputo fractional-order derivatives and classical derivative,
both with y = order =[0.1, 0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for the three parameters. a The insulin
parameter and CAD). b The body mass index parameter and ¢ The body mass index parameter
pertaining to the diabetes dataset

Algorithm 3: Caputo fractional derivatives application on diabetes dataset with
non-integer orders:

Step 1: Set non-integer orders (y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9)).

Step 2: For the y order Caputo fractional derivatives that have been identified in
Step 1, all the orders are applied to the attributes distinctly in the dataset. As a result,
values are obtained.

Step 3: Print graphs of types of derivatives as grid and surface (x; y; z) = (for
each attribute of the data u, «, derivative of all the data)

The computational application of Caputo fractional-order derivatives and classical
derivative, both with y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], for all the
parameters have been conducted (Table 1 for the diabetes dataset details) concerning
the diabetes dataset. To set as an example and depict the computations in a clear
way, we provide Fig. 4 for three parameters (the insulin parameter, the body mass
index parameter and the body mass index parameter). Accordingly, Fig. 4 depicts
the computational application of Caputo fractional-order derivatives and classical
derivative, both with y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], for the
three parameters concerning the diabetes dataset. For these orders, Caputo fractional-
order derivative and classical derivative (calculus) models have been identified.

The computational application of Caputo fractional-order derivatives and classical
derivative, both with y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], for all the
parameters parameters have been performed (see Table 1 for the details) pertaining to
the diabetes dataset. To set as an example and depict the computations in a clear way,
we provide Fig. 4 for three parameters (parameters: The insulin parameter and CAD),
the body mass index parameter and the body mass index parameter). Accordingly,
Fig. 4 depicts the computational application of Caputo fractional-order derivatives
and classical derivative, both with y = order = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9], for the three parameters (see Table 1 for the diabetes dataset details of all
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the parameters involved) concerning the diabetes dataset. For these orders, Caputo
fractional-order derivative and classical derivative models have been identified.

3.3 Application of ANN Algorithm to Diabetes Dataset and
Results

The computational application of Caputo fractional-order derivatives and classical
derivative obtained according to Fig. 5, with y = order = [0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9], for all the parameters (see Table 1) pertaining to the diabetes
dataset yields the significant attributes in new datasets. For these orders based on the
model, Caputo fractional-order derivative and classical derivative models have been
identified. Table 3 provides the parameters of FFBP algorithm used in this study.

Figure 5 provides the application of Caputo fractional-order derivatives with
Mittag-Leffer function parameters MLF (10, 2, 2) to the diabetes dataset, together
with the new dataset (mfc_diabetes dataset), which was obtained from the significant
attributes from the related application, with the FFBP algorithm application to the
new dataset providing the orders’ performance in terms of the disease’s course and
prediction.

Figure 6 provides the application of classical derivative to the diabetes dataset,
along with the FFBP algorithm application to the new dataset (cd_diabetes dataset)
providing the orders’ performance in terms of the disease’s course and prediction.

Table 4 provides the optimized results obtained from Caputo fractional-order
derivatives with three parametric Mittag-Leffler function parameters’ orders for the
mfc_diabetes dataset and cd_diabetes dataset with the FFFBP algorithm applica-
tion to the related dataset, besides the disease’s diagnosis, course and prediction
performances.

Table 3 The network parameters of the FFBP algorithm

Network properties Values

Training properties Levenberg-Marquardt (‘trainlm’)
Adoption learning function Learngdm

Performance Mean squared error (MSE)
Transfer function Tansig

Epoch number 1000

Hidden layer number 1

Training dataset (538x 1)

Test (115x 1)

Validation dataset (115x 1)

Output Diabetes




Algorithmic Complexity-Based Fractional-Order Derivatives ...

Output Class
-

Best training performance is 0019309 at cpoch 5

Order: 0.2

Confusion Matrix

T
Target Class

Errors histogram with 20 Bins

Order: 0.5

Confusion Matrix

Output Class

Target Class

(a) Confusion matrix for mfe_diabetes dataset
8o Errors histogram with 20 Bins

7000

6000)

5000

% 4000]
2 3000
K
2000
1000)

Output Class
-

Instances

81

Order: 0.8

Confusion Matrix

1
Target Class

Errors histogram with 20 Bins

Errors
(b) Error histogram for mfe_diabetes dataset
Best training performance is 0.20867 at cpoch 2
o

1.14e+10)
121e+10)

Best training performance is 019772 at epoch 4

10" 10"
10" 10" 10"
0o 2 4 6 s 10 01 2 3 4 5 6 1 8 0
11 Epochs 8 Epochs 10 Epochs
(c) Best validation performance (MSE) for mfc_diabetes dataset
R=0.48531 R=0.53689 , R=0.63293
08
206
<
104
5,02
E
&
S.02
104
E-06
X Sos
1 1L
- 05 0 05 1 05 0 05 1 05 0 1
Target Target Target
(d) Regression analyses for mfc_cancer cell dataset
1 ROC 1 1 ROC
0.9) 09| 09)
0.8] 0.8] 08|
2 07 g 07 g07
2 06 2 06 206
Z 03] Z 05 Z 03]
2 04 2 04 204
ERy Ry £
£ 03 E£03 £ 03
02| 02 02
0.1 0.1 0.1
ol 0
0.102030405060.70.809 1 00.102030403060.70809 1 0 0.10203040350.60.70809 1
False positive rate False positive rate False positive rate
(¢) ROC analyses for mfc_diabetes dataset
1o Gradient=0.092265,at epoch 1 o Gradient=0.063289, at epoch § Gradient=0.1146, at epoch 10
E z B
5 5 5
£10° £10° 0
S Sjgm Sy
1 Mu =0.0001, at epoch 11 1 Mu =0.0001, at epoch § | Mu =0.0001, at epoch 10
=5 =2 =
204 205 { Eos}
0 0 0
Validation Checks = 6, at epoch 11 ) Validation Checks = 6, at epoch 8 Validation Checks = 6, at epoch 10
= . - * = *
I o { =) .t £l ot
= . = ¢ s ¢
> . . > hd s .
3 106 T 45 7 ) 106
11 Epochs 8 Epochs 10 Epochs

(f) Training state for mfe_diabetes dataset
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Table 4 The optimized results obtained from Caputo fractional-order derivatives with three para-
metric Mittag-Leffer function and classical derivative concerning the mfc_diabetes dataset and
cd_diabetes dataset with FFBP algorithm

Fractional differen-| Percentage | Sensitivity | Precision | Specificity | F1-score | Multiclass | Area under
tial type/order of correct classifica- | ROC curve
classifica- tion the (AUC)
tion MCC)
(accuracy)
Caputo/0.2 77.0000 65.6805 66.0714 82.7795 65.8754 0.48531 0.94345
Caputo/0.5 79.6000 66.2722 71.3376 86.4048 68.7117 0.53689 0.95495
Caputo/0.8 83.8000 72.7811 77.8481 89.4260 75.2294 0.63293 0.96152
Caputo/1 78.2552 66.0448 69.9605 84.8000 67.9463 0.51563 0.94981
Diabetes dataset 81.1198 99.6269 64.9635 71.2000 78.6451 0.67685 0.85654

Caputo fractional-order derivatives show the requirement of higher conditions of
regularity for differentiability, and its derivative must initially be computed for the
fractional derivative of a function in the Caputo sense.

Table 4 provides the results that have been obtained by Caputo fractional-order
derivatives; and the classical derivative application is compared with the results of
classical derivative presenting that Caputo fractionalorder derivative (with order 0.8)
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generates better results. Table 4 presents the outcome that FFBP Algorithm applica-
tion diabetes dataset based on Caputo fractional-order derivative and classical cal-
culus yields the following best accuracy results for the respective orders: for order
0.2 (77.0000); for order 0.5 (79.6000%); for order 0.8 (83.8000%) and for order 1
(78.2552%). When the results obtained by Caputo fractional-order derivative appli-
cation are observed, it apparently seems that Caputo fractional-order derivative with
varying orders generates more accurate results. As a result, the Caputo fractional-
order derivative for differentiable functions has yielded more robust accuracy rates.
Therefore, the definition for Caputo fractional-order derivatives is performed for dif-
ferentiable functions whereas functions that have no first-order derivative could have
fractional derivatives with all orders which are less than one.

3.4 The Application of Algorithmic Complexity Based on
Caputo Fractional-Order Derivative to the Diabetes
Dataset

Algorithmic complexity, concerning the way the required resources are to be used
for the solution of the problem, is employed for the classification of computational
problems. Since some problems in computational biology are not feasible in the
computational sense, the search for the optimal solution may be limiting in terms
of practical aspects. As a result, it is sought that such problems are handled by
approximations and heuristics to get over the computational necessities, which results
in suboptimal solutions. However, when the underlying complexity of an algorithm
is looked into, then efficiency of the algorithm can also be identified.

In view of that, while doing the complexity computations regarding Caputo
fractional-order derivative with three parametric Mittag-Leffler function and clas-
sical derivative (cd), fast Fourier transform, gamma function, integration and mth
derivative have been addressed in the form of Big O.

The application of the algorithmic complexity regarding three parametric Mittag-
Leffler function is as per Eqs. 24 and 25.

00 n

S Tatm
E“"Q(X)_§F(’V)F(na+ﬂ)'n! a, B, >0,xeN (24)

o Tt
O ) = O e+ 5) (25)

The application of the algorithmic complexity regarding Caputo fractional-order
derivative (FOD) is as per Egs. 26, 27 and 28.
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Table 5 Results of the application of algorithmic complexity based on Caputo fractional-order
with three parametric Mittag-Leffler function and classical derivatives to the diabetes dataset

Order Diabetes (N = 8)
Caputo FOD | 0.2 (N/10g(0.8))? * (log(—18*N-4)/N) =8.0288¢ + 02 +
with three 5.0474¢e + 02i
parametric
Mittag-
Leffler
function
0.5 (N/log(O.S))2 *(log(—18 *N-4)/N) =83.2083 + 52.3105i
0.8 (N/log(0.2))? * (log(—18 * N-4)/N) =15.4337 + 9.7027i
cd 1 (N/log(0))*(log(—18 * N-4)/N) =0
O f (1) =0 / ) (26)
= T
r ( _ Oé) (l T)(y-H m
O (D f (1)) = O (log (m — @) 2.N*.0p(N)") 27)
O(D*f (1)) = O (log (1 — @) 2.N*.Opr (N)) (28)

The results of the application of algorithmic complexity based on Caputo fractional-
order and classical derivatives to the diabetes dataset are provided in Table 5.

When Caputo fractional-order derivative with three parametric Mittag-Leffler
function is @ < 1, « the value decreases, while the complexity increases logarithmi-
cally. When there is this condition, o = 1, then it is trivial.

Based on the complexity results obtained for Caputo fractional-order derivative
with three parametric Mittag-Leffler function concerning the algorithmic complexity
obtained, as provided in Table 5, it is seen that the highest complexity is the case for
order 0.2. The lowest complexity order is for 0.8.

The lowest order, which is 0.8, with the least complexity of Caputo fractional-
order derivative, yields the best result as 83.8000% in the diagnosis and classification
of the disease by the ANN algorithm.

4 Conclusions, Outcomes and Future Directions

Fractional calculus approach provides novel models by introducing fractional-order
calculus to optimization methods, which is employed with regard to machine learn-
ing algorithms. This scheme aims at achieving optimized solutions by maximiz-
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ing the accuracy of the model and minimizing the functions like computational
costs. Mathematical-informed frameworks, in this structure, are utilized to allow
accurate, reliable and robust understanding of various complex biological processes
which include spatial and temporal scales. This complexity requires a comprehen-
sive handling of different biological processes, capable of capturing the significant
attributes on the temporal and spatial scales. The investigation of algorithmic com-
plexity enables directions towards the application of efficient programs to process,
model and analyze biological data in the field of computational biology. Further-
more, algorithmic complexity, as a way of comparing the efficiency of an algorithm,
enables the examination of an algorithm’s properties to solve computational problems
along with the relationship between the size of an instance of the generic problem
and the time needed for computation. Algorithmic complexity, moreover, allows the
classification of the computational problems based on their algorithmic complexity,
as defined according to the way the resources are required for the solution of the
problem. Our aim in this study has been the diagnostic and differentiability predic-
tive purposes for the disease, (diabetes, as a metabolic disorder, in our case) which
might display various transient biological properties. Thus, we have aimed to estab-
lishing a robust and accurate model based on the combination of fractional-order
derivative and Artificial Neural Network (ANN) and foreground the importance of
algorithmic complexity in order to obtain the fractional-order derivative with the
least complexity so that it would be possible to attain optimized solution. This sort
of integrative multi-stage scheme based on mathematical-informed framework as
proposed in our study has not been addressed in this manner in previous works in the
literature [32—44]. Accordingly, the following steps have been applied to serve our
aims: (i) The Caputo fractional derivative was applied with three-parametric Mittag-
Leffler function («, 3, y) to the diabetes dataset. Hence, new fractional models with
varying degrees were established by ensuring data fitting through the Fitting algo-
rithm Mittag-Leffler function with three parameters («, 3, v) based on Heavy-tailed
distributions. After this application, the new dataset (mfc_diabetes) was obtained.
(i) Classical derivative (calculus) was applied to the diabetes dataset, generating the
cd_diabetes dataset. (iii) The performance of the new dataset as obtained from step
(i) and the dataset obtained from step (ii) as well as the diabetes dataset was com-
pared via the FFBP algorithm. The fractional-order derivative model which would
be the most optimal for the disease was generated through this step. (iv) Algorithmic
complexity was used to attain the Caputo fractional-order derivative with the least
complexity, namely to achieve the optimized solution.

Considering these aspects and way of thinking proposed in our study, the following
future directions can be stated:

— Computational biologists and researchers can benefit from algorithmic complexity
to attain optimized solutions by managing the intensive data tasks through max-
imizing accuracy and minimizing computational costs; thus, to attain the most
optimized results by providing directions to process, model and analyze the related
data.
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— Through the identification of the applicable models in advance by algorithmic
complexity, it will be possible to attain efficiency in terms of resources when time
needed to execute the algorithm and memory are considered.

— The use of factional-order derivative with the least complexity enables one to
achieve the optimized scalable solutions to problems driven by complexity.

— The integration and application of multi-stage methods can assure a better under-
standing of complexity in computational biology algorithms and effective design
of the concomitant high-performance computing.

The multi-stage integrative approach, including the application of fractional-order
calculus to optimization methods, and the experimental results we obtained have
revealed the benefit of maximizing the model’s accuracy and minimizing the cost
functions like the computational burden through algorithmic complexity, which elu-
cidates the applicability of the method proposed in different domains characterized
by complex, dynamic, variable and transient components.
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Abstract The magnetohydrodynamics boundary layer flow of rate type fluid over an
oscillating inclined infinite plate along with Newtonian heating and slip at the bound-
ary is investigated. The model is developed by using the Atangana-Baleanu time-
fractional derivative operator. Temperature and velocity fields for the non-integer
order derivative model are computed. From our general results, several results from
the literature could be recovered, for example; the cases corresponding to the con-
stant motion of the plate, as well as the analogous results for ordinary Maxwell fluid,
the fractional viscous and ordinary viscous fluid could be recovered. Moreover, the
physical significance of the parameters like relaxation time, fractional order parame-
ter, Grashof number, and inclination of the plate is discussed and their control on the
velocity of the fluid is analysed through graphical illustrations and useful conclusions
are recorded.
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1 Introduction

Magnetohydrodynamics (MHD) boundary layer flow of fluids over an oscillating
plate is the interest of many researchers because such models have lots of applications
in the chemical and food industry [25]. MHD free and mixed convective flow, as well
as the impacts of the flow of thermal energy and mass transference past an upright
plate, have been extensively investigated in literary works [13, 18-20, 23, 27, 29].
Moreover, studies related to natural convective flow under the influence of magnetic
parameters as well as with the flow of thermal energy and mass transmit over an
inclined plate can be found in [1, 2, 8, 28].

In 2013, Mishra et al. [22] analysed the oscillatory suction and heat source influ-
ences on MHD fluid flow having the property of visco-elasticity passing across a
permeable medium. The critical investigation of boundary layer flow over a perme-
able non-linearly elastic sheet with partial slip effect at the boundary was done by
Mukhopadhyay [24]. Further investigations include MHD heat transference over a
porous plate with slip effects [12], combined effects of partial slip and magnetic flux
on diagonally prominent rheological fluid over an elastic surface [26], heat conduc-
tivity with emission consequences of slip flow of Casson fluid [30], mass transfer and
radiation influences on MHD natural convective flow over an exponentially stimu-
lated upright permeable plate [29], turbulent free convection in fluid over a vertical
plate submerged in a permeable medium [35].

More recently, Gupta et al. examined the MHD flow of Williamson nanofluid
confined by the stretching sheet with the variable thickness in [10]. Moreover, MHD
three-dimensional boundary layer flow and heat transfer of water-driven nanoparti-
cles are discussed in [11]. Furthermore, Imran et al. [14] investigated boundary layer
flow of generalized MHD Maxwell fluid over an exponentially stimulated infinite
perpendicular surface with Newtonian heating and slip effect at the bounds.

Due to fact that the complex behaviours of many materials can be explained with
ease employing non-integer order derivative approach, that is the reason, the use
of non-integer order derivatives in the modelling of dynamical systems is gaining
much fame. Fractional order characterization inhered many physical phenomenon,
hence, it is necessary to explain them. Non-integer order derivatives provide an
excellent instrument for explaining the memory and hereditary characteristics of
many materials and processes [6] that are clearly ignored while examining the model
using classical integer- order derivative approaches. Clearly, classical integer-order
models are inadequate to certify suitable correlation with experimental data. That
is the very reason that, over the recent few years, researchers have renewed their
investigations by using fractional order derivative to get accurate modelling and more
insight of the dynamical systems, for example, we refer [6, 31, 32, 34] and the work
cited in there. Nowadays, fractional calculus and its applications have caught the
attention of many researchers. Many engineering, economics, and medical problems
can easily be analysed and solved by models associated with fractional calculus
In the literature, there are several definitions of the fractional derivative operators,
which have their own advantages and disadvantages [3-5, 7]. In 2016, Atangana and
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Baleanu [3] established fractional-order derivative with non-local and non-singular
kernels having its implementation in heat transference models [4]. For some notable
most recent studies using this new definition of fractional order derivative operator,
we refer [15, 17].

Motivated by these investigations, we aim to explore the MHD boundary layer
flow of rate-type fluid over a inclined plate that is oscillating in its plane. Furthermore,
the flow is influenced by the slip effects and the Newtonian heating of the plate. The
governing equations of the model are developed in the setting of fractional calculus
employing the Atangana-Baleanu time-fractional derivative operator. Further, the
control of the flow parameters on the dynamics of the fluid will be graphically
analysed.

2 Problem Description

We shall examine an incompressible Maxwell fluid with unsteady boundary layer
flow over an inclined plate along with Newtonian heating and slip at the boundary.
The inclined plate makes an angle y with -axis and 0 <y < 7. At t is zero,
the plate and the fluid are static with constant temperature T,. Starting at ¢ > 0,
there will be a sinusoidal motion of the plate with a slip effect at the wall. The
assumption as proposed by Makinde [21] was taken into account that the wall is
subject to Newtonian heating. All the physical pertinent quantities are the function
of ¢ and ¢ only as the plate is infinite. The influence of the magnetic flux is upright to
the plate. The governing equations for Maxwell fluid flow problem associated with
heat transfer and shear stress owing to a mix of heat emission and convection are
elaborated in terms of partial differential equations (PDE) in a dimensionless form
are [14, 21, 32].

9\ dwy,r) Pw(y, 1) il
<1 + AE) a7 = g2 + <1 + )\§> Gro(y, t)cosy
3
_M<1+x5) W 1) (1)
9 ow(y, 1)
(1 +x5> (g = 00 @)
(Y, 1) 320y, 1)
P = "oy )

In the above relations w (¥, t) denotes the velocity of the fluid, v (i, t) is the shear
stress, 6 (¥, t) = M temperature of the fluid. Moreover, A, Gr, M and Pr,zf
represent the relaxation time parameter, Grashof number, magnetic parameter and
effective Prandtl number, respectively.
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Fig.1 Geometry of the W - axis
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The imposed initial and boundary conditions are as follow:
d 1
w0 =0, WO 6 G0 =0, @)
at =0
dw(0, ¢ i a0y, t
w(0,1) — bL = sin(at), W, 0 =—[14+6(0,1)], 4)
dy 0 ly—o

w,t) —> 0, 6, t) > 0,as Y — o0. (6)

where a is a constant and b describe the parameter of slip (Fig. 1).
Using Atangana-Baleanu time-fractional derivative operator of order o € (0, 1),
Egs. (1-3) become:

dwy. ) w1

(1 +148¢ D) + Gr(1 4+ A*8CD"0(y, 1) cos y

ar Y2
— M1+ 27D w(y, 1), (7
" dw(p, 1) « I*0(, 1)
(22D Ty = —— = Pro D101 = —15=. @)
where time-fractional Atangana-Baleanu derivative is stated as [3]:

1 T _ o

ABC D (1)) = —/ WEs | —a = | e, )
1—aJ, l -«

The Laplace transform (LT) of the time-fractional Atangana-Baleanu fractional
derivative is
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3 Investigation of the Solution of the Problem

3.1 Investigation of the Solution of the Temperature

95

For the solution of the temperature profile, we will solve the equation associated with

temperature,
O, 1) 00, 1)
Preff = D ,
ot dy
subject to the conditions,
0@y, 0) =0,
0 (Y, 1)
—o=—[1+4+6(0,1)],
oy ly=0 [14+6(0,1)]

0, t) —> 0,as Y — oo.

Applying the Laplace transform,

N %0 (y, 1)
LiPresy €D, 0) = L{ = 2],
we get ) _
Prosps®0(y,s) 320y, 5)
(1-—a)s*+a Y2
satisfying
960, ) [1 - } -
=—|-406(0,s)| and 0(y,s) — 0, as Y — o0.
oy s

Finally, solving (15) using (16),, we get

— Pr(, s
V(1 —a)s? +«a eV (17a§/sa+a
VPresps® — /(T —a)s® + o s«

é(w, S) =

or

O, 5) =01(s) X (¥, 5)

(10)

(1)

(12)

13)

(14)

15)

(16)

a7

(18)



96 0. J. Osalusi et al.

where
Gis) = YU Zeite (19)
VPresps® — /(1 —a)s® + o

which can be written as

- 1—a)s Prefra Preffaz 1
616 = | 5 3 X 7
Prosr+a—1  (Prep+a —1) (Preff +o—1)° 8 — prorra—T
«/ Preff
€y
VA —a)s? +as
{ 1—-a) Prefra Prefra 1 }
Propp+a—1  (Prepp+a—1)  (Presp+a — 1)2 s — ﬁ +a—1F
(20)
and
e_]// Prfffsu
G, 5) = ——— 1)
Using the formulae
—y Pre/fs“
]SV Tome by 2Py f QR Sy, (22)
s T o Xx(Pregy +x2)
L~! { a } = Iy(at) and L™! { u } = 8(t) + aly (at) (23)
/52 + a? 0 A/s2 + a? :
we get
t
O, 1) = / 01t — )0 (Y, 1)dt (24)
0
where

Pe Pe —
01(0) = a7 LL e [8) + b1 0] + | 7L (0 — bane ™ 1, (b1)

Prgff

- [6“4’ + e L) + a18(t) + are™ (25)

+ a3

and
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2Pr oo sin(—7=x)
O, 1) =1 — =< / N e dx (26)
T 0 x(Preff +x )
. _ l—a Presr o _ Preg o o
with al Py ta—l> 9= Br, ta 170 BT B, ra-D5 = B, a1 and
b= 1= o
Moreover, the heat flow rate from plate to fluid is measured by Nusselt number:
_ 0.0
Nu = = . SO

P eff P e —
Nu = Progy e —ap | e, b0) + @y | 2L [ e 1, 00)] . @27)
— o —

By taking limit @ — 1, we obtain the related results for the ordinary temperature
field:

O, 1) = e( v P'«ff)erfc (W VPress ,Prt ' — erfc (w il ) , (28)
eff

and the corresponding Nusselt number:

Nu:e(ﬁ) (2—erfc< ! )) (29)
PI'eff

3.2 Investigation of the Solution of the Velocity

Employing the LT on Eq. (7) considering the concerned initial condition, the velocity
in transformed domain is obtained as follows:

[s(—a)+A]s* +salw(y,s)

(1—a)s* +«a
_ 2wy, 5) n [[s(l—ot)~|—)»]s“—|—sot]Gr JA—a)s+a
Ay (1—a)s* +o VPrers® — /T —a)s® +a
*}\/m _ a
¢ ! cosy — M[[S(1 @)+ A+ Sa]]li}(l/f, 5). (30)
R (1—a)s* +«

On simplification, we have:
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8212(1#, K)) _ |:[[s(1 —a)+AlsY + sal

oy? I—a) +a U +M)] Wi, 5)

[[s(l—oz)—i—)»]s“—i—soe]G JA—a)s+a

= r

1—a)s* +« VPresps® — /(T —a)s¥ + o
871//4 /Presps® /(1—a)s® +a

sa

cos y.

Takel —a = 0. w = [[so +Xx]1s*+sa] (1 + M) and A = [so +A]s* +sa Vo s+aGrcosy

0s* +a 5% (0 s%+a) \/Pref/ $%—s\ /o s Fa
the last expression becomes
9% B Prosrs®
—— — oW = Ae ¥V o (€1}
2
with boundary conditions w (0, s) — b%&” = Fizand w(y, s) > 0,as Y — oo,

Equation (31) is a second-order non-homogenous differential equation. Its com-
plimentary and particular solutions are of the form:

We(W, 5) = C1e?Ve 4 Cre VV®

Pror/s®

A(os® + a)e YV o
Props® — w*(0s* + @)

wy (Y, s) =

thus the general solution w(yr, s) = w.(Y¥, s) + w, (¥, s) is

P'ef/ s

yve , Als® +a)e MV e
+ a _ 2 a :
Pr.srs w*(0s* + @)

WY, s) = Ci1e’V° + Cre

(32)

In order to find C; and C,, we use the conditions w(y, s) — 0, as ¢ — oo and

w(, s) — b%ﬁ/’” = sziaz’ we have
_ _ a—AK(s>+a*>)(1+bD) _ os%ta [ Prepps®
C,=0andC, = o (ibve) ,where K = —Preffsu_wz(muﬂ),andn _‘/7&”%&).

Finally,
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_ ((so +1)s* +sa) Jos+aGrceosy
w(y,s) =

(s2 + a?) |: s¥(os* + o)  /Prys® —Jos¥ +a

os® +a - Preffsa
X = )
| Prypse — [LO2E2bbsel () 4 AR (0s + @) Vos*+a

o s +a

1 o [ sotn)s® +sa(14+M)
P e 14 os%ta
[ (14+M)(os*+1)s%
(1 + b os¥+a )

n [ ((s0 +2)s* +sa  Jos +aGrcosy
s% (05 +a) \/Preffs“ — Jos* +a
o Propps®
Y Uas T X I:e‘/’ U,Vé:»a ] . (33)
Pregys? — [CTER5 (14 M)P (0% + )

It is worth mentioning that inverse Laplace transform of Eq. (33) is somewhat
tedious to obtain. In [29], Stehfest proposed a numerical algorithm for Laplace inver-
sion. So, we will apply Stehfest’s algorithm to obtain the solution for velocity in the
original domain.

The Stehfest’s algorithm is as follows [29];

2q
_In(2) . In2)
p(¥. 0 =— ;d,w(\v,n ).

where ¢ is the positive integer,

min(j,q) . .
. i9(2i)!
d: = (—=1)/14
;=D _;l] (g —Di'G — DY —DIRi —HY
=l

and [%] denote the integer part of the number %

4 Limiting Solutions

In this part, using our general results, we will recover the results corresponding to
the ordinary Maxwell and fractional/viscous fluids.
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4.1 Ordinary Maxwell Model (a2 — 1)

Corresponding results for the case of ordinary Maxwell fluid can be recovered from
our results by taking limit « — 1 in (33) and them applying Stehfest’s algorithm
to obtain the corresponding solution for velocity in the original domain Remember
l—a=o0,asa0 — 1,0 =0, soEq. (33) becomes

D s) = |: a 4 A+ 1)Grcosy ( 1 ) (1 b %Preffs>:|

(s2+a? /Prosrs — 1 \Presps — A%s?

( ! ) N e
(1 + by/as (L + M)

L (2t Der ( 1 > e UVEI (34
VPresrs —1 Preses — (A + Ds(1 + M)

4.2 Fractional Viscous Fluid (. = 0)

Likewise, setting A = 0 into Eq. (33), we get the corresponding results for fractional
viscous fluid

B 5) a (05T ' +5a) Jos+aGrcosy
w(y, s) =
(s> +a?) 5%(0sY +a) \/Props® —Jos¥ +a

[ 05+ Preffs“
X [so 5%t +sa] 5 1 —+ b a—
| Progps® — [P D (1 + M) (05 + a) o5 +a

o5 +o

1 e sa(em)
X e w os¥+a
[ (1+M)o s
<1 + b os*+a )

_<0s°‘“+sa Jos+aGrcosy )

59(0s* + @) /Proprs® — Jos¥ +a

o Pro s
u+]as +a y [e_w e ] . (35)
Proprs® — [Z24(1 4+ M)*(0s® + @)

os“+ta

+
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4.3 Viscous Fluid (¢ — 1)

In order to recover the results for the case of viscous fluid apply limit « — 1 to Eq.
(35), we get

Dy, 5) a Grcosy 1+ b/Prsys V5T
w(y,s) = e
(s24+a?)  /Prss — 1 Progps — s2(1 + M)?
Grcosy oV fPrors (36)

+
(/Prefrs — D) (Prosrs — (s(1 + M))2)

5 Graphical Description and Discussion of the Results

In this section, we will discuss the influence of system parameters on fluid flow.
Moreover, in pursuance of analysing the control of the physical pertinent parameters
in particular Grashof number, relaxation time, magnetic field strength, fractional
order parameter, and effect of the slip and non-slip boundary condition and inclination
of the plane on the fluid flow behaviour. We have prepared the graphs of velocity
versus v, corresponding to different values of parameters by using the computer
software MATHCAD 15.

Figure 2 portrays the behaviour of the velocity curves for varying values of the
fractional parameter with and without slip conditions. We have noticed that the fluid’s
velocity decreases as we increase the fractional parameter because the rise in the value
of parameter « increases the viscosity of the fluid which results in a decline in the
fluid’s velocity. Also, it is observed that the velocity of the fluid without slip effect
condition on the plate is larger than the velocity of the fluid with slip. The reason
is that, for the case of no slip, the fluid elements are moving not only due to the
temperature variations but also the shear stress provided by the motion of the plate.

The consequence of different values of Grashof number on the velocity curves
with and without slip conditions is depicted in Fig. 3. It is reported that an add-up in
the value of Grashof number, enhances the profiles of the velocity of the fluid. It is
observed that the fluid with no-slip condition moves faster at different values of the
Grashof number parameter as compared to the case when fluid slips on the wall.

Figure 4 illustrates velocity profiles versus i for varying values of relaxation
time with and without slip. We have reported that any increase in relaxation time
parameter results in depreciation in the velocity of the fluid for both cases, i.e. with
and without slip conditions. Because, increase in relaxation time causes the thinning
in shear stress, which results in fall in velocity.

The velocity curves against ¥ for varying values of the magnetic parameter are
plotted in Fig. 5. We have noticed that when magnetic strength grows there is depre-
ciation in the fluid velocity curves. Because the Lorentz force that is induced by
transverse magnetic field causes a drag force that resists the motion of the fluid.
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Fig. 2 Velocity description
versus ¢ for varying of
fractional parameter with
and without slip condition at
t=0.2

Fig. 3 Velocity description
versus V¥ for varying of
Grashof number with and
without slip condition at t =
0.2
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Figure 6 shows the velocity curves against i for varying values of angle of
inclination of the plate. It is noticed that elevation in inclination declines the velocity

curves of the fluid.

In Figs. 7 and 8, we have compared the velocities of viscous (for A = 0 in Egs.
(33) and (34)) and Maxwell (ordinary and fractional) fluid with and without slip
condition. We have noticed that fractional and ordinary viscous fluid move faster
than fractional and ordinary Maxwell fluids when there is a slip and no slip effect
at the boundary. This is because Maxwell fluid contains both viscous and relaxation
parameters, which reduce the velocity while viscous fluid contains only viscosity

parameter.
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Fig. 4 Velocity description
versus Y for varying of
relaxation time parameter
with and without slip
condition at t = 0.2
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Fig. 7 Comparison betwixt
Maxwell’s fluid velocity
(fractional and ordinary), |
and viscous fluid velocity ’
(fractional and ordinary)
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Fig. 8 Comparison betwixt
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6 Final Remarks

Heat transfer magnetohydrodynamics boundary layer flow model of a rate type fluid
over an inclined oscillating plate employing the recent definition of non-integer order
derivative, i.e. Atangana-Baleanu time-fractional derivative operator in the sense of
Caputo is developed. The fluid is flowing over an oscillating inclined plate with
slip/no slip and Newtonian heating at the boundary. The governing equations for
the description of the fluid flow phenomenon are used in dimensionless form and
the Laplace transform method is employed to solve the problem. From our general
results, several results from the literature could be recovered, for example; the cases
corresponding to the constant motion of the plate (by setting frequency of oscillation
of the plate equals to zero), as well as the analogous results for ordinary Maxwell
fluid (by taking o« = 1), the fractional viscous (for A = 0) and ordinary viscous fluid
(for . = 0, @ = 0) could be recovered. The important findings of the investigation
are as under:
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. Increase in the value of fractional order parameter «, results depreciation in the

velocity of the fluid, so o behaves as shear thickening parameter.
Velocity of fluid without slip effect is larger in comparison to the velocity of a
fluid with slip.

. Rise in the value of magnetic strength parameter M, decreases the fluid flow

velocity.

Fluid velocity boosts up with the increase in Grashof number Gr.

The fluid flow depreciates with the increment in the value of relaxation time A.
Influence of an increase in the angle of inclination of the plate results in decreases
in the velocity of the fluid.

Viscous fluid flows faster than fractional/ ordinary Maxwell fluids for both the
cases, i.e. with and without slip effect at the wall.
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Multilayer Perceptron Artificial Neural )
Network Approach to Solve Sixth-Order er
Two-Point Boundary Value Problems

Akanksha Verma and Manoj Kumar

Abstract In this article, we have presented a multilayer perceptron artificial neural
network (MLP ANN) method to solve the sixth-order boundary value problems
that arise in several branches of engineering and physics such as fluid dynamics,
hydrodynamics, beam theory, astrophysics and so on. The obtained solutions of
these boundary value problems by our method are optimal as compared to other
existing approximation methods. Furthermore, we have tested few models in order
to decide the performance of the proposed technique. The numerical outcomes show
that the proposed strategy is very effective for higher order boundary value problems
and required low memory space and less computational time.

Keywords Sixth-order boundary value problem - Multilayer perceptron neural
network + Quasi-Newton BFGS algorithm

AMS Subject Classification 65N20 - 65L10 - 68T07 - 68W50

1 Introduction

Boundary value problems (BVPs) play a vital role in the field of science and engineer-
ing and have attracted much attention. For instance, in the field of astronomy when a
vast level layer of fluid is warmed under the action of rotation then instability occurs.
If this instability is fixed as ordinary convection, then it is represented by sixth-order
BVPs [1]. Other than this, the slender convecting layers encased by stable layers that
are assumed to encircle A-type stars can be modeled by sixth-order BVPs [2, 3].
Glatzmaier [4] clarified that dynamo activity in certain stars can be demonstrated by
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sixth-order differential equations. Also, many authors have discussed the numerical
behavior of sixth-order BVPs [5-7].
The literature of numerical study on the solution of the sixth-order BVPs is not too
vast. In 1986, Agrawal [8] presented the existence and uniqueness of the solution of
such BVPs, however, he did not discuss any numerical strategies.
In this manuscript, we have discussed the approximate solution of the following
sixth-order BVPs:

w® ) = f(w,r), 0<r<l, (1)

with respect to the boundary conditions:
w?(©0) =a and w?(1)=0b, =012, 2)
where f(w, r) is a given linear/non-linear function and a and b are given constants.

In 2001, Wazwaz [9] demonstrated the modified a domian decomposition method
(MADM) for solving sixth-order BVPs with boundary conditions at two points and
achieved convergent series solutions. Further, Gamel et al. [10] presented the Sinc-
Galerkin technique to figure out the sixth-order BVPs and obtained better results as
compared to the MADM technique. In 2006, Akram and Siddiqi [11] used the non-
polynomial Spline strategy to obtain the approximate solution of sixth-order linear
BVPs and proved that the method is second-order convergent. Afterward, Islam et
al. [12] used the non-polynomial spline function to expand a class of numerical
techniques for solving sixth-order linear and nonlinear BVPs and obtained second,
fourth, and sixth-order convergence results. In 2007, Noor and Mohyud-din [13]
solved higher order BVPs by using a variation iteration method (VIM). In order
to solve these BVPs, they first convert the higher order BVPs into the system of
integral equations and then they used VIM method to get the required solution. In
2010, Liang and Jeffrey [14] presented the homotopy analysis method (HAM) for
solving parameterized sixth-order BVPs. However, for enormous parameter values,
these equations cannot be clarified by other expository strategies therefore they obtain
the approximate series solutions and proposed that the HAM is an analytical tool
to understand the linear and nonlinear BVPs. In 2013, Akram and Rehman [15]
presented the reproducing kernel method to clarify the linear and nonlinear sixth-
order BVPs and provides the results in terms of convergent series.

Whereas, Agrawal et al. [5] used the monotone iterative technique and an oper-
ator spectral theorem for the presence and assortment of positive solution of sixth-
order BVPs with four variable parameters. Recently, Sohaib et al. [16] proposed the
Legendre-wavelet collocation method (LWCM), which is based on Legendre poly-
nomial to get the arrangement of sixth-order BVPs. In this strategy, they used the
collocation points to change the differential equation into the system of algebraic
equations and then get the solution by LWCM technique. Recently, Khalid et al.
[17] presented the Cubic B-Spline method to get the solution of eighth-order linear
and nonlinear BVPs. In 2020, Mustafa et al. [18] introduced a technique for solving
second-order singularly perturbed boundary value problems, which is based on the
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basis function of a six-point interpolatory subdivision.

In 2013, Kumar and Yadav [19] gave the mathematical model and MLP ANN tech-
nique for computing the buckling load of beam column with several end conditions.
They solved fourth-order BVPs by using the MLP ANN technique. Thereafter, Mall
and Chakraverty [20] presented Chebyshev neural network technique to get the solu-
tion of second-order singular initial value problems. Recently, Verma and Kumar
[21] presented the MLP ANN technique for solving the same problem [20] and get
the better results as compared to Chebyshev neural network technique. Towards this,
many researchers used the ANN technique to solve the different types of differential
equations (see. [22—26]) but the solution of sixth-order two-point BVPs by using
MLP ANN with the Quasi-Newton BFGS optimization technique has not been dis-
cussed by anyone.

Motivated by above, in this manuscript, we have discussed the multilayer perceptron
ANN strategy to find out the solution of sixth-order two-point BVPs. This technique
offers us following attractive features:

e The obtained solutions by the proposed technique are in closed analytic form
whereas the other techniques such as the Euler method, Galerkin methods and finite
difference method give the solutions in discrete forms.

e This method does not need any linearization procedure to solve a nonlinear prob-
lem.

e Proposed technique does not need any type of adjustment for different boundary
conditions. A comparative system has followed for illuminating differential equation
with a different type of boundary conditions.

e The implementation of this technique is very easy for solving the higher-order
ODEs, PDEs, and system of DEs.

The arrangement of the paper is as per the following: Sect. 2 represents the architec-
ture of multilayer perceptron neural network. In Sect. 3, we have discussed the MLP
ANN technique and used it to solve the sixth-order BVPs. In Sect. 4, we have solved
some numerical test problems and compared the obtained solution with exact results
and other numerical results available in the literature, while Sect. 5, concluded the
article.

2 Structure of MLP ANN

In this segment, we have presented the architecture and working process of multilayer
perceptron neural network. The multilayer perceptron is basically a feed-forward
neural network that contains one input layer r along with bias p ;, one or more than
one hidden layers and single output layer. Figure 1 depicted the framework of MLP
ANN, here §;; are the connection weights between the input layer to the hidden
layer and v; are the connection weights between the hidden layer to the output layer.
This kind of network is broadly utilized in the approximation of arbitrary functions
as it gives good generalization and high precision. In most cases, the multilayer



110 A. Verma and M. Kumar

Fig. 1 Architecture of
multilayer perceptron
artificial neural network

Qutput
Laver

Hidden
Layer

perceptron with one hidden layer is enough to approximate any arbitrary function
with the desired accuracy. The approximation capacity of MLP ANN is more reliant
upon the number of neurons in the hidden layer rather than a number of hidden layers.

3 Description of MLP ANN Technique

To solve the second-order ODEs and PDEs, Lagaris et al. [23] presented a method
based on MLP neural system. For solving the sixth-order BVPs, we have used a feed-
forward neural system as a fundamental estimation component whose parameters,
biases, and weights are modified to minimize the error function. For the training of
the network, we have used optimization algorithms that required the computation of
the gradient of the error concerning network input, weight and biases.

The proposed approach has demonstrated in terms of general sixth-order BVP:

G(7, w(@), Vw(7T), V2w (7)), V3w(7), Viw(@), V w(7), Vow(7)) 7 eD,

3)
with respect to boundary points w®(0) = « and w® (1) = B fori = 0, 1, 2. Here,
7 = (r1,r2, ..., 1) € R", D C R" signifies the domain of definition and w(_r)) is

the answer to be calculated.

Conversion: Initially, we break the domain of definition D and its boundary § into
a lot of discrete points D and S, separately. Then we convert it into following

G(r7, w(r), Vu(r), Viw(i), Viw(r), Viw (), Viw(i), Vow (7)) 77 € D,

“4)
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with respect to constraint imposed by the boundary condition.
If w,(7, 73) signifies a trial solution with the flexible parameters 77), then the
problem is converted to an unconstrained optimization problem

min Y G, wi (7)), Vw (7)), V2w (7)), Vi (77), V4w, (7)), V2w (7)), Vow (7).
r,'eﬁ
4)

Construction of Trial Solution: Assume that trial solution is
w(7) = A7)+ B(FIN(T ., D). (6)

where A(7) represents the continuous ansatz function, which is created in such
a manner in this way, that it fulfills boundary conditions B(7) =r3(r —1)3 and
N(7.,7) represents the particular output feed-forward neural network.

Gradient Computation: The effective minimization can be considered as a cycle
of preparing the neural network, where the error corresponding to each input vector
is the worth that needs to get zero.

We have taken a multilayer perceptron with n input nodes, one hidden layer with
h hidden nodes and a linear output node. For an input vector 7, the output of the
network is

h
N(7,P) =) vio(z). (7)

i=1

Here,

o is the activation function, which is taken as tanh(z) and (1 + exp(—z;))~",
Zi = Zr;=1 &jrj + i,

&;j represents the connection weight from the input node j to hidden node 7,
v; represents the connection weight from hidden node i to output node,

wu; represents the bias of hidden node i.

Now, we have differentiate N w. 1. t. r;

h

kN
W = Z Vigil;a,-(k), (8
i=1

where o; = o (z;) and o ® signifies the kth order derivative of activation function.
Usually, the derivative of various order w. r. t. various inputs can be composed as

h
gm gm2 Mn

ary™ 87‘2'"2“'8 —
i=

where P, = [[{_,; & and A =Y 7 m;.
Gradient computation with respect to network parameters
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oN
9N Pe®™, (10)
Bvi
oN
— = UiPiGi(A+l), (11
oW
oN (A+1) (m;j—1) my (An)
N P ™D 4y £ | @, 12
9 r; o; m & l—[ Ex | o; (12)

k=1k#j

Network Parameter Updation: When the differentiation of the error function with
respect to system parameters has been characterized then for updating the parameters
we have used delta rule

IN,

vi(t+1) = "'i(t)+6wa (13)
IN,

:U«i(t“‘l):ﬂi(t)“‘fa_wa (14
Ny

§it+ 1)=& 0)+<¢ 15)

9E;

where the learning rates have been taken as §,¢€, and ¢, i =1,2,...,n and j =
1,2, ..., h.
We proceed with this iterative cycle until the error function reduces to its lowest.

4 Numerical Results

In this section, we have presented the approximate solutions of sixth-order linear and
nonlinear BVPs. We have utilized a multilayer perceptron artificial neural network
having one hidden layer with five hidden nodes and one output node. For each
test problem, the activation function has been selected according to the accuracy of
the results. To minimize the error function, we have used the Quasi-Newton BFGS
optimization technique, which is quadratically convergent and shows outstanding
performance. Both the test problems have been executed on MATLAB R2016a.

Problem 4.1 Consider the boundary value problem [27]
wO@) +rw@r) =—Q4+11r + r)exp(r), o=<r =<1, (16)

with respect to the boundary conditions
w@0) =0, wl) =0, wO) =1, w)=—e, WO =0 w(l)=—4e.
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Table 1 The ideal estimations of weights and biases (Problem 4.1)

i 1 2 3 4 5
i 0.53143741 —0.18649484 | 0.09170045 0.30018984 0.46037251
Vi —0.39732087 | —0.42266970 |0.52914815 0.25034663 0.16175795
&ij 0.57484654 0.74307111 1.11358492 0.95564375 0.95564376
Table 2 Comparison of numerical results of Problem 4.1
r MLP ANN Exact Solution | Cubic Absolute error | Absolute error
[27]B-Spline | (MLP ANN) |[27]
h=1/10
0.0 0.0 0.0 - 0.0 -
0.1 0.099571 0.099465 0.099427 1.06 x 1074 [3.79 x 1073
0.2 0.196024 0.195424 0.195266 5.99 x 107* | 1.57 x 10~*
0.3 0.284835 0.283470 0.283130 1.36 x 1073 [3.40 x 1074
0.4 0.360090 0.358038 0.357505 205x 1073 [533x107*
0.5 0.414518 0.412180 0.411507 233 %1073 |6.74 x 10~*
0.6 0.439393 0.437309 0.436600 2.08 x 1073 |7.08 x 10~*
0.7 0.424296 0.422888 0.422280 1.40 x 1073 |6.08 x 10~
0.8 0.356715 0.356087 0.355696 6.28 x 107% 391 x 1074
0.9 0.221477 0.221364 0.221230 1.13x 107* |1.35%x 10~
1.0 0.0 0.0 - 0.0 -

The precise solution of problem 4.1 is (1 — r)exp(r) and is shown in Fig.2. The
trial solution of the problem according to the proposed techniqueis 7 (1 — r)exp(r) +
r3(1 — r)3N(r, p). We have prepared the system by taking 10 equidistant points in
[0 1]. It has been solved in 301 epochs and the computational time is 7.455s.
In Table 1, we have shown the ideal estimations of weights and biases. In Table 2, we
compared our obtained results with the exact solution and cubic B-Spline solutions
[27]. We used the first column for the inputs while the second column is used for
obtained MLP ANN solution. In column 3, we have mentioned the exact solution
for the problem whereas column 4 presented the approximated solution by Cubic
B-Spline method with step size 11—0. Columns 5 and 6 are used for the absolute error of
MLP ANN solution and Cubic B-spline solution with the exact solution, respectively.
In Fig.2, we have graphically represented the exact solution and MLP ANN
solution for problem 4.1 whereas in Fig. 3, we have shown the error.

Problem 4.2 Consider the boundary value problem [27]
w® ) + exp(—r)w(r) = =720+ (r —rH3exp(r), o<r <1, a7

with respect to the boundary conditions
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Fig. 2 Graphically comparison of MLP ANN results with Exact results (Problem 4.1)
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Fig. 3 Graph of the error between exact solution and MLP ANN solution (Problem 4.1)
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Table 3 The ideal estimation of weights and biases (Problem 4.2)

i 1 2 3 4 5

i 0.60704392 |0.48918147 | —9.262512E—04 |0.41202518 |0.00370112

Vi —0.03415692| 0.14825743 | 1.03624592 —0.09377157| 0.50964194

&ij 0.60996704 |0.89110647 | 0.37717831 0.71546001 | 0.55369925

Table 4 Comparison of numerical results of Problem 4.2

r MLPNN Exactsolution Cubic [27] Absolute Absolute
B-Spline error error [27]
h=1/10 (MLPNN)

0.0 0.0 0.0 - 0.0 -

0.1 0.000729 0.000729 0.000504 0.0 2.25%x 1074

0.2 0.004096 0.004096 0.003360 0.0 7.36 x 1074

0.3 0.009261 0.009261 0.007980 0.0 1.28 x 1073

04 0.013824 0.013824 0.012144 0.0 1.68 x 1073

0.5 0.015625 0.015625 0.013800 0.0 1.83 x 1073

0.6 0.013824 0.013824 0.012144 0.0 1.68 x 1073

0.7 0.009261 0.009261 0.007980 0.0 1.28 x 1073

0.8 0.004096 0.004096 0.003360 0.0 7.36 x 1074

0.9 0.000729 0.000729 0.000504 0.0 2.25x 1074

1.0 0.0 0.0 - 0.0 -

w@0) =0, w(l)=0, wO©) =0, WwA)=0, w©)=0,w()=0.

The precise solution of Problem 4.2 is 73(1 — r)3 and is shown in Fig.4. According
to the proposed technique, the trial solution of the problem is r3(1 — r)3 N (r, p). We
have prepared the system by taking ten equidistant points in [0 1]. It has been solved
in 87 epochs and the computational time is 3.346s.

In Table 3, we have shown the ideal estimations of weights and biases. The obtained
outcomes have been compared with the exact results and cubic B-Spline results [27]
which is shown in Table4. We used the first column for the inputs while the second
column is used for obtained MLP ANN solution. In column 3, we have mentioned
the exact solution for the problem whereas column 4 presented the approximated
solution by Cubic B-Spline method with step size 11—0. Columns 5 and 6 are used for
the absolute error of MLP ANN solution and Cubic B-spline solution with the exact
solution respectively.

In Fig. 4, we have graphically represented the exact solution and MLP ANN solution
for problem 4.2 whereas in Fig. 5 we have shown the error.
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Fig. 4 Graphically comparison of MLP ANN results with exact results (Problem 4.2)
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Fig. 5 Graph of error between exact solution and MLP ANN solution (Problem 4.2)
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5 Conclusion

In this manuscript, we have proposed an approximation technique for solving the
sixth-order BVPs, which relies on the capacity estimate abilities of feed-forward
neural network. We have shown that our obtained results are in closed analytic form
and are very close to the exact solution. Moreover, in Problem 4.2 from Fig.5 and
table 4, it can be seen that the obtained results are equal to the exact results. So we
can say that the proposed technique combines accuracy, effectiveness and does not
need any special lattice discretization for tackling the problems. Also, this technique
has been considered as a mesh free numerical technique.
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Wavelet Transform on Generalized )
Quotient Spaces and Its Applications L

Abhishek Singh, Aparna Rawat, and Jagdev Singh

Abstract The concept of Schwartz distributions presents a unique area of math-
ematical research, which contributed to the development of several mathematical
disciplines. In this chapter, we discuss the theory of generalized quotients which is
a generalization of Schwartz distributions. The general construction of generalized
quotients is discussed, which is applied to various function spaces in order to obtain
several generalized quotient spaces. Consequently, wavelet transform is extended to
these spaces to obtain some generalized results. The concept of convolution related to
wavelet is applied to obtain operational properties for quotient of sequences. Further,
wavelet transform of periodic quotient of sequences is presented and a uniqueness
theorem is defined for the wavelet transform of analytic functions. Moreover, we
discuss some fundamental concepts of the theory of generalized quotients and then
explain some of its applications such as extending the wavelet transform on a space
of generalized quotients on the torus Bg (T%).

Keywords Fourier transform - Wavelet transform - Schwartz distributions -
Tempered Boehmians
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1 Introduction

Wavelets are the latest area in the frontiers of mathematics, signal processing, image
processing and scientific computing. It is a versatile tool in every aspect of mathemat-
ical context and possesses great potential for applications, as wavelets can be viewed
as a unique basis for representing functions for time-frequency analysis. The theory
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of Fourier analysis is well established and popular subject at the core of pure and
applied mathematical analysis. The basic building blocks of the Fourier transform
(complex exponentials: e¢/27"*) oscillate over all of the time (—oo < ¢ < 00). As a
result, it is difficult for the Fourier transform to represent signals that are localized
in time. Thus, it fails to accumulate information that varies with time. As it does
not provide the time at which frequency exists hence, it is only ideal for stationary
signals. Hence, Fourier methods are not very effective in recapturing the non-smooth
signal. In these cases, wavelet analysis is often very efficient, as it presents a simple
approach for dealing with the local aspects of a signal. For the last two decades, the
advancement of wavelet transform in the field of signal analysis is expanding mak-
ing it an important mathematical tool. The main reason is wavelet transform, which
can represent a function of the time domain in a time-frequency plane. Therefore,
it works as a frequency and time localization operator. Also, wavelets can change
according to time intervals to obtain high and low-frequency components. Hence,
enhancing the study of signal analysis with localized impulses and oscillations. In
particular, wavelet analysis is efficient in extracting noise from signals that com-
plement the classical methods of Fourier analysis. Wavelet analysis has been one
of the major research directions in both pure and applied mathematics and is still
undergoing rapid growth.

The wavelets were developed mostly during the last two decades and are associ-
ated with the classical theories of different disciplines, including pure and applied
mathematics and engineering. The concept of wavelets started to emerge in the liter-
ature in the late 1980s. The theory of wavelets can be seen as syntheses of different
ideas that started from various areas, including physics (coherent states formalism
in quantum mechanics), mathematics (Caldern Zygmund operators and Littlewood—
Paley theory) and engineering (in signal and image processing). The mathematical
interpretation of the wavelet transform started in the year 1985 when Meyer dis-
covered the results given by Morlet and the Marseille group. He noticed a link of
Morlets algorithm to the resolution of identity in the harmonic analysis due to Caldern
in 1964. Therefore, Meyer built the mathematical foundation of wavelet analysis and
hence may be regarded as the founder of it. He still actively promotes the field of
wavelet analysis as an interdisciplinary area of research. Recently, applications of
wavelet analysis have been extended across various fields of mathematics, physics,
computer science and engineering.

Based on the idea of wavelets as a family of functions, the mother wavelet v, , (¢)
is constructed from translation and dilation of a single function ¥ € L*>(R) and is
defined by

Vpa(t) = (Va) 'y (%) , t,beR, a>0, (1)

where a and b act as the dilation and translation parameter that measures the level

of compression and finds the location of the wavelet. Further, if |a| < 1, then (1) is

the compressed version of the mother wavelet and represents higher frequencies.
The wavelet transform of ¢ € L2(R), with respect to (1), is defined by [18]
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(We)(b, a) = /¢(z)¢7a(z)dt, t,hbeR, a=>0 )
R

and the inversion for (2) is given by

(o]

2 T 1 x—b da
P(x) = C_¢,/ / ﬁ(W@(b,a)l/f (T) db PR eR, 3)
0 —00
where -
22 TN
S =/ V@) dv:/Mdv <00 [3: p.64]. @)
2 J [v]| J [v]

If (2) exists, then (W ¢) (b, a) maps each square integrable function ¢ on R to wavelet
transform function W on R x R,. Therefore, from (2),

(W) (b, a) = (¢ * ha,0) (D), (&)

where h(t) = ¥ (—1).
If ¢ € LP(R) and ¢ € L?(R), then

1 1 1

$xhood) e L'R), —+-=-+1. (6)
P g r
Now, applying Fourier transform to (5), we get
al'? [ T2
(We)(b,a) = e Ylaw)p(w)dw (N
(2m)
R
_ |a|1/2 il _—
= a7 P o] k..
Hence,
F W) (b, )] (@) = la]'*§ (@)} (aw). ®)

1 1
This relation holds in general, for ¢ € L?(R) and ¢ € L?(R), where — + — =
P 4
1
-+ 1<p,qr=<2
r

The theory of Distribution or generalized function was first proposed by Sergei
Sobolev in the year 1935 while exploring the uniqueness of the solution for the
Cauchy problem of linear hyperbolic equations. Later, Schwartz expanded the area
of mathematical research by extending the theory of generalized function in the well-
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known hand graph Theories des Distributions which provided a detailed basis for
the numerical concept of generalized function spaces [23]. The theory of wavelet
analysis provides fundamental characterizations of function and distribution spaces.
Using the representation of wavelet transform given by (7), (W¢)(b, a) is expanded
to Schwartz tempered distributions and inversion formulae are also obtained in the
distribution setting [12—-18, 20, 26, 27, 30].

In recent years, the theory of distributions or generalized functions is at its peak
bringing a great revolution in mathematical analysis. In 1935, Sergei L. Sobolev
derived the theory of generalized functions while working on the second-order hyper-
bolic partial differential equations. But in the 1950s, L. Schwartz introduced the
concept of distributions that opened a new area of mathematical research. This con-
cept supported the development of several mathematical disciplines, such as trans-
formation theory, operational calculus, ordinary and partial differential equations,
and functional analysis. Another approach for this theory was given by S. Bochner
around 1930s, to generalize the Fourier transformation for functions f(¢) that grow
as t approaches infinity [1]. The concept of distribution gives a better mechanism
for analysing various entities, such as the delta function, which arise naturally in
several mathematical sciences and which can be corrected using distributions. The
idea behind distribution is assigning a function not by its values but by its behaviour
as a functional on some space of testing functions. Here the space of testing functions
is represented by O which contains all complex-valued functions that are infinitely
smooth and have compact support. A continuous linear functional on the space D is
called a distribution and space of all distributions is dual of the space D, denoted by
D'

In the theory of distributional analysis, differentiation is a continuous operation
as every distribution has derivatives of all orders. Consequently, distributional differ-
entiation commutes with different limiting processes such as integration and infinite
summation. This is the contrast to classical analysis wherein either such opera-
tions cannot be interchanged or the inversion of the order must be justified by an
additional argument. Though not very recently, yet during the last five decades the
theory of generalized functions and integral transforms has been combined, which
gave rise to fruitful results in the theory of integral transforms associated with dis-
tributions, known as distributional transform analysis. Recently, there were many
applications of wavelet and other transforms in distribution spaces [14, 16]. Further,
the investigation of the wavelet transform of distributions, tempered distributions
and ultra-distributions has extended the applications of the wavelet transform.

There are various other approaches to the theory of generalized functions. One of
them is Mikusifiski’s algebraic approach or the sequential approach, used to define
generalized quotient spaces also known as the Boehmian spaces. Here, distributions
are defined as a class of equivalent sequences. The construction of generalized quo-
tient space with its brief introduction is presented in Sect. 2. In Sect. 3, we study the
wavelet transform of periodic generalized quotients to obtain a uniqueness property.
Sections 4 and 5 examine the wavelet transform on generalized quotients in Lebesgue
space and in tempered distribution space. The last section is dedicated to presenting
the applications of generalized quotient spaces.
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2 Generalized Quotient Spaces

The theory of quotient of sequences (Boehmians) in 1973 by Boehme [2] brought
a new change in the theory of applicable functional analysis, whereas the general-
ized quotients are considered to be a generalization of Schwartz distribution theory
(see [23]). The use of an algebraic approach, quite similar to the construction of
Mikusinski operators, advented a new class of generalized function 8, called gener-
alized quotients. This is constructed by Piotr Mikusifiski. Motivation for the devel-
opment of the theory of generalized quotients lies in the core of regular operators,
given by Mikusiriski and Mikusifiski in [6], since these operators form a subalgebra
of Mikusinski operators and contain the distributions whose supports are bounded
from the left, which does not allow them to contain all continuous functions. Strictly
speaking, the space of generalized quotients contains all regular operators, all dis-
tributions, and few objects which are neither distributions nor operators. Mikusinski
introduced and studied the convergence of generalized quotients, where the space
provided with the induced convergence [7, 8]. Further, there always exists a corre-
sponding field of quotients for a ring without zero divisors.

The theory of convolution quotients is inclusive of operators of differentiation,
integration and related operators of differentiation and integration. This is the theory
that provides a satisfactory answer to Heaviside’s calculus, particularly when applied
to partial differential equations. This generalization of the Schwartz distribution
theory together with their integral transforms is further generalized, came to be
known as Boehmianian transform analysis, that is the theory of generalized quotients
and their integral transforms, which prompted several authors to study several such
integral transforms on various generalized quotient spaces along with their specific
properties.

A natural extension of tempered distribution is tempered generalized quotients
hence the wavelet transform can be extended for this class of generalized quotients. In
[21], Roopkumar defined convolution theorems for the wavelet transform of tempered
distributions and hence constructed space of tempered generalized quotient for the
wavelet transform. Application of generalized quotients to different spaces with the
convolution product gives numerous generalized spaces. Therefore, different integral
transforms have been studied in the space of generalized quotients [4, 5, 11, 24, 25].

Let us denote a linear space by G and its subspace by S. For each pair of elements
¢ € G and ¢ € S, let the product f * g be assigned (x is a map from G x S to G)
such that
G ify,pe S,thenyy xp e Sandy xp =@ x ¢
({)if p e Gandy,p € S, then (¢ x @) x ¥ =@ * (9 x V)

(i) if¢, f e G,p € S,andk e R, then (¢ + f) x ¢ = (¢ *¢) + (f * ¢) and
k(¢ @) = (ko) * .

Let the set of delta sequences denoted by A satisfies

v)ife, f e G,(6,) e Aandp x5, = f x5, (m=1,2,...),then¢p = f .
(WM if (¢n), (8,) € A, then (@, * 5,) € A.
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Let A denotes the class for which the pair of sequences are defined by A =
{(@n), (@n) : (&) © GN, (pn) € A}, for each n € N. An element ((¢,), (¢n)) € A
is called quotient of sequences, denoted by ¢,,/¢,, if

Let¢,, /o, and f, /Y, be two quotients of sequences, then these two are equivalent,
if
G * Vn = fu * O, Vm,n €N,

which divides (A into equivalence classes, denoted by [¢,/¢,]. These are called
generalized quotients and their space is given by 8 = B(G, A). Following illustrates
the behaviour of generalized quotients for the algebraic properties.
(i) Addition of two generalized quotients and multiplication by a scalar are defined
by

[(bn/(on] + [fn/wrl] = [(¢n * I/fn) + (fn * fﬂn)/(% * I/fn)]

and

a[¢n/¢il] - [a¢n/<P;z], o € (C

(i1) The differentiation and the operation * are, respectively, defined by

[¢n/‘pn] * [fn/lpn] = [(d’n * fn)/((pn * 1/fn)]

and
Da[¢n/(pn] = [Da¢n/§0iz]-

In particular, if [¢,/¢,] € Band § € S is any fixed element, then the product * is
defined by
[¢n/(pn] *6 = [(‘pn * 8)/()0}1]7

which is said to be in B(G, A).

3 Uniqueness Theorem for Wavelet Transform
for Generalized Quotients of Analytic Functions

Let T be a unit circle of the complex plane and C°°(T) be the space of smooth
periodic functions of period 2z. In [22], Roopkumar defined wavelet transform
for periodic generalized quotients and showed that it is uniform with the wavelet
transform on C*°(T). An analytic function ¢ (z) is bounded in the unit disc D satisfies
the uniqueness property, i.e. if the radial limit lim,_, ; ¢ (re’®) = 0 on T then ¢ (z) =
0, almost everywhere on T. Let C(T) represents the set of all continuous complex-
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valued function on T and C" (T) represents collection of such sequences. A function
on the real line with period 27 and a function on T are treated the same. Let ¢, n €
C(T), then their convolution is given by

1 b
(@ xm)(1) = §/¢(I —wndu, tel[-m, ] €))

Let ¢ be a 2 —periodic function which is L7 integrable over the interval [—m, 7],
then by (8) the kth coefficient of the wavelet transform in terms of Fourier coefficient
can also be defined by

i {(We)} (k) = lal'/*, (k) (ak). (10)
Theorem 1 Let F = [%} € Br. For each k, the sequence {c, {(W¢,)}}o, con-

verges.

Proof For F = [@} € Br, we have ¢, € CV(T) and {(,0,,};11 € A, then there

n
exist a natural number p such that ¢, # 0 and ¢, — 1 as p — 0.

Letk € Z and a > 0. Consider

Ck {(W¢n)} (k)

lim a'¢, (k) (ak)

_ a4, ()i (@k)pn (k)

@m (k)
_ a2 @ * gn) W)Y (ak)
G (k)
V2.0 (N (I
_a ¢m(k3w(ak)§0n(k). an
@m (k)
Since, ¢, — 1 as n — o0, therefore from (11), we have
. a'2¢, () (aw)
lim ¢ {(Wo)} (k) = ——F—F——. (12)
n—>00 Om (k)
O

Definition 1 For F = [?—”] € Br, the wavelet coefficient of the generalized quo-

tient F is defined by
(W) = lim (W),
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®n

Definition 2 Let F = | — | € B, then F = 0 on an open set €2, if there exists a
Pn

delta sequence {¢,} such that F x ¢, € C(T), Vn € N and F * ¢, — 0 uniformly

on compact subset of 2 as n — o0.

n

Definition 3 A generalized quotient F' = [ i| € Br is of analytic type if the

Pn
wavelet transform of the generalized quotient F is zero.

Pn

Theorem 2 IfF = |:—i| € Bris of analytic type and its wavelet transform be given

n
by (WF)(b, a) such that F is zero on some open arc R, then F is equivalent to zero.

Proof Let F € By be of analytic type with F =0 on Q. As (WF)(n,a) =0 for
n = —1, -2, .... Therefore, for each n

Wen)(b,a) =(WF)(b,a)p,(b) =0forb=—-1,-2,---. 13)

Thus, ¢, is identically zero on T.
By definition of generalized quotients, ¢, * ¢ = ¢ * ¢, Vn, k € N, then we have

¢n = ¢n - (¢n * </)k) + (¢n * Qﬂk), Vn,k € N. (14)

As {@,} € A, then foreachk, (¢, * ¢xr) — ¢, ask — oo on T .We consider a closed
subinterval I, on 2. Then there is another closed interval I, such that for any /& >
0, Ll CQ,and (—h,h) + I, C I,. Also, supp ¢, < (—h, h), forn > m € N.
Let for fixed m and for k > kg, let € > 0. As k — oo, we have ¢ — 0 uniformly
on I;. Then there exist a natural number k( such that for all x € I, |¢r(x)| < € for
all k > ko. Hence

| (D i) ()] = |(x * @n) (1)

IA

h
1
2—[|¢k(t—u)l<pn(u)du
4
—h
h

i/%(“)du =¢, Vte b (15)

IA

2
—h

Therefore, (¢, * ¢r) — Ouniformly on I, ask — oo, foreachn > m.By combining
(13), (14) and (15), we see that for each n > m, ¢, vanishes on 1.
This completes the proof of the theorem. O

Let Bt denote the space of generalized quotients that contains the analytic functions
of the complex plane in the open unit disc D. A generalized quotient is an analytic
element of B, and is defined as follows:
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[0¢]

g =1¢(z) = Zskzk S lsk] < Ce™'®® Yk € N, and foreachl >0} . (16)
k=0

Let ¢, () be the sequence of trigonometric polynomial, given by
n
Gu(t) =Y sme", (17)
m=1

then the wavelet transform of an periodic function ¢ (¢) which is the uniform limit
of the {¢,(¢)} is defined by

(W) = lim (W) = ) sulal'/*J (aw)e", (18)
m=1

provided the limit exists.

Definition 4 Let F = [Z—‘] € Br. The wavelet coefficient of F, is defined as

cx(WF)) = 1im,_, o0 a' 2, (k) (ak).

Definition 5 A sequence {F,,} € Br is said to §—converge to some F' € Brasn —
oo if there exists {¢,} € A, such that F, % ¢, F x ¢, € L'(T) and F, % ¢,, —
F % ¢, € L'(T) as n — oo for each fixed m.

Theorem 3 Let S be a Schwartz distribution and the pth order distribution S is given
by DPS = 3", s,(l,i)Pe", then the trigonometric series given by Y _ s,e""!
converges to S in weak sense. Also, let ¢ belongs to the class of analytic functions
in open unit disc D, then there exists a sequence {T,,} € o/ and F € By such that

Tm—>¢andeSi> F asm — oo.

Proof Let ¢ (z) be an analytic function in the open unit disc D, given by

$@) =Y .7, (19)
n=0
where "
Z $m| < 00. (20)
n=0

Now, for each m € N, let

Tu(2) =Y swi", z€D. (1)
n=0
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Then by (16), T,, € </ and T,, — ¢ as m — o0. Also, for some [, > 0, we have

S=Y s (22)

n=0

By taking convolution of two functions S and ¢, we get

(S * @) (w)

i / S(w — x)pr (x)dx
2

— s T dr(x)dx
2717 =

1 R . .
= Z/ane”“wef’l”"@(x)dx
n=0

-7

= Z Sneilangk (m)

n=0

(Wn)

= lim A:|a|l/2q3k.
n—00 w(aa))

Taking ni (1) = Y7, s,€'"y(I,) € L'(T) and choosing

] >
n 1+ ——-), | <k
Bl = ( ir1) Il

0, otherwise,

then foreachk, wehave S * ¢ — > s,e"® € L'(T)asm — ooand ({m}, {¢x}) €
n=0

/. Hence, for F = ({n}, {¢}) € Br, by definition we get T, 2 F € Br as
m — 00. This completes the proof. ]

4 Wavelet Transform on Generalized Quotients
in Lebesgue Space

The convolution related to wavelet transform is given by

(W(p#/))(b,a) = (We)(b, a)(W[) (b, a). (23)
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The association among the wavelet convolution # and Fourier convolution * is defined
by [18, p. 131]

U (aw)(@# )N ) = Q) [P (a)p () * ¥a) f(O)l(w). (24)

Uniqueness: If 1 + 1 = 1 then V(aw)d(aw) € L'R), ¥ (aw) f(w) € L' (R) and
1/}(aw) # 0 for a e Ry. Let (Wo)(b,a) = (Wf)(b,a), V(b,a) € R x R,. Then
¢ = f, ae.

Now, dividing (24) by Y (aw) # 0 and then applying inverse Fourier transform
[18, p. 131], we obtain

(1)) = f / () f () Da(x, v, dxdy,
R R

where
D,(x,y,2) = (27-[)—2n/ fe—i(}*—z)w—i(x—}v)n
R IR
+ Y (aw, an)dw}dn
with -
O W yows A ek 1}
¥ (@)

The wavelet convolution # in terms of the basic function is given by [18, p. 119]:

T d
D.y.2) =g / f Voa®) wb,a(y)wb,a(mdb;“
0 R

25)
=Wy V.0 () ¥ba(0]R).
Hence N
/ D(x,y.2)Vpa@)dbda = Y o(x) - Vpa (). 26)

Multiplying both sides of (24) by @ and integrating with respect to a from 0
to 0o, we get
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T d
/ @) 64 @)
0

= Q)" @dah&(a-)é(-) x Y (a) fOlw).

0

By using inverse Fourier transform and (4), we get

Cl/f(d’#f)(Z) = (271)72"/ eiwzdw
R

A e—iwavw(u)du[@(a.)(ﬁ(.) * l&(a)f'()](a))

@) (@) = / / () f()D (. y. dxdy.

RJR

Translation, denoted by 7, is given by
(1yp)(x) =P x (x,y) = /RD(L v, )¢ (2)dz.

Therefore, the wavelet convolution of ¢ and f is given by

(1)) = /R /R D(x. v, px) f(y)dxdy.

Lemmal If¢ € L? and ¢ € S, then (¢p#p) € LP.

In view of Lemma 1, the mapping of convolution product # is given
#:LP xS — LP.

Let,
A ={((¢n), (gn)) : ¢ € L?, (¢n) € A}.

Then ((¢,), (¢,)) € A is said to be a quotient of sequence, if
OuHto, = du#toym, V¥ m,n eN.
If two quotients of sequence ¢, /¢, and f, /o, are equivalent, i.e.

ou#to, = futhoy, Y neN

A. Singh et al.

27

by

(28)

(29)

(30)

€29
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then such quotient of sequences or generalized quotient is known as L”—generalized
quotient and the space of such L”—generalized quotients is represented by B(L”, A).
Let C* be the set of infinitely differentiable function on the real line, then the equiva-
lenceclass F' = [¢, /¢,], where ¢, € C® and ¢, € A,isknown as C*°—generalized
quotient. Its space is given by B(C™, A).

A function ¢ € L? is identified with L'-generalized quotient [(¢#¢,)/¢,], where
(¢n) € A. Likewise, let f be a C*°—function identified with C*°—generalized quo-
tient [( f#¢€,)/€,], where (€,) € A is another delta sequence.

Letunder the identificationu = [(u#6,)/8,], the space D’ be identified with C*°—
generalized quotient. Then, these identifications possess the aspired algebraic and
topological properties [8].

Lemma2 If¢peL?, 1 <p<ocoandy € L1(R) witha > 0and p =1 also s €
S, then (W[g#5]) = (W[e)) - ¥[5].

Definition 6 A L” generalized quotient [¢, /¢,] is wavelet transformable if there
exists a C*™°-generalized quotient y and a representative [ f,,/v,,] for y with f,, =
(W[en])- The space By (L", A) represents the set of all wavelet transform of gener-
alized quotients.

Lemma 3 If [¢,/¢,] is a quotient in By (L", A), then (W[¢,1)/ (W] is also a
quotient in B(C*>, A).

Proposition 1 Let F = [¢,/¢.] be a wavelet transformable L?-generalized quo-
tient. Then the wavelet transform of F is a C*°-generalized quotient y, given by

_ (WignD
Wip)’

y=(WF) (32)
Theorem 4 If ¢ € L?, v € L? and wavelet transform is in L" and, also if F =
[(@#8,) /8] and y = [(W).(W5,)/(W8,)], then F € By (L', A) for p, q = 1such
that ( WF) =y € B(C*, A).

Proof A LP function ¢ can be identified with the generalized quotient F =
[(¢p#65,)/5,], where (8,) € A. As ¢ € LP (by Lemma 1), therefore, (¢p#5,) € L7,
which asserts that (W (¢p#6,,)) = (W[¢]).(W[6,]), (by Lemma 3). Also, (W[ f]).(W[5,]) €
C*™ shows that F = [(¢#5,)/8,] € Bw(L', A) for p,q = 1. Then

(33)

(WF) = ["S#‘Sn} _ (WIFDWIES.D _

Sn (W[s.D
|

Theorem 5 Let F € By (L", A) and a be a constant. Then ax € By (L", A) and
(W(@F)) =a(WF).

Proof Letx = [f,/¢,],thenwehaveax = [af,/¢,]. Also, (W[(af,)]) = a(Wf,) €
C>® as (Wf,) € C*. Hence [(W(af,))/en]l € B(C™, A).
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This shows that [(«f,,)/¢n] = ax € By (L", A), and that

(W(ax)) = [(W(afu))/(Wei)]
= a[(W(fn)/(W(pn)]
=a(Wx).

O

Theorem 6 Ifx € By (L', A), and § € S, then (x#8) € By (L', A) and (Wx)#3.

Proof 1f x = [g—] € By (L', A) for p,q = 1, then (Wx) = [(‘%1] € B(C™, A).

From Lemma 1

x#8 = [f”:(s} € By (L', A).

Here
(W(f,#8) = (W[fuD.(W[8]) € C*™. (34)

Therefore, [(W (f,#5))/¢.] € B(C*, A) andhence, [( f,#5)/¢n] = (x#6) € Bw (L', A)
for both p = 1 and ¢ = 1. Also,

(W[x#8]) = [(W(f"#‘”)} _ [(an) : (Wa)}
(Wen) (We,)
(Wey,)

O

Lemmad If f, f, € L' and f, — f asn — oo, then f and f,, are elements of
B(C®, A), satisfying f, — f in B(C*™, A).

Theorem 7 The wavelet transform for generalized quotient is a continuous linear
map from By (L', A) to B(C®, A).

Proof As x, converges to x in Bw (L', A), there exists a sequence (6;) € A such
that (x#8y), (x,#8;) € L', and as n — oo

(x,#8;) — (x#8;) in L',Vk e N
i.e.
(W (x,#8¢)) — (W(x#8)) in L' for p, g=1as n— oo,V k eN.

Let f, = (W(x,#6;)), f = (W (x#6;)) as C*°—generalized quotients, then
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fo = f in B(C*™, A). (35)
By the definition of generalized quotients, we get

(W (xn#5r)) = (W (x#5y))
= (Wlx,]) - (W[5c])
= (Wx,)#38;. (by Theorem 6)

Similarly,
(W (x,#51)) = (Wx)#5y, (36)

and (30) can be written as
(Wx,)#8, — (Wx)#8, in B(C™, A). (37)
Therefore, for (Wx,)#8;)#8; and ((Wx)#5;)#5; in C*°, we have
(W (x, #8,))#8, — (W (x#8,))#8;, as n — oo in C™.

Hence,
(Wx,) = (Wx), as n— oo in B(C™, A).

O

Theorem 8 Lety € B(C™®, A). Then there existsx € By (L', A) suchthat (Wx) =
y iff y is a quotient g, /\, such that g, € L' N C™.

Proof Let us consider a generalized quotient x = [f,/¢,] € By (L', A) and f, €
L'.Then (Wf,) € L'. From Proposition 1, we candefine, y = (Wx) = W[ f,/¢.] €
B(C®*, A) and from Definition 1, we get (W f,,) € C*.Hencey = (Wx) = W[ f,/¢n]
satisfies (Wf,) € L' N C*.

Conversely, let y = [g,/¥,] € B(C®, A), for g, € L' N C®. Let x = [f,/¢n]
such that f, = (W[gy]). As, g, € L', wehave f, € L' and fi#h; = fi#y,, Vi, j €
N and g;#y; = g;#;, Vi, j € N. This shows that x = [f,/¥,,] € Bw(L', A) and
(WLfu]) = gu € C®. Hence x = [f,/¥a] € Bw(L', A) and (Wx) = y.

Therefore, the image of the wavelet transformable generalized quotient, under the
classical wavelet transform, is given from the L? space to C* space. (]

Example 1 Let the Mexican hat wavelet (MHW), which is considered as an even
wavelet and is derived by taking the second derivative of the Gaussian function is

defined by
2 2

= 2 a- =
Y =eF (=) =——set. (38)

The Fourier transform of MHW is as follows:
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U(w) = V21 wle X (39)

and the jth derivative of MHW is given by

i . ,
Diy(t) = Z (i) DO =)DV e | (40)
r=0

Using Hermite polynomial’s property in (40), we have

J R ,
DIyt =Y (j) DO = et H, (1)

r=0
_](l—t)ezH(t)+(>( 21)62Hk 1(1), (41)

where Hy(t) denotes the Hermite polynomial. Therefore, ¥ (¢) € L7 (R) and the
Mexican hat wavelet transform of f € L?(R) is given by (2), [19].

5 Wavelet Transform on Bg (T%)

In the next section, we discuss the space of tempered distribution and tempered gener-
alized quotients for the wavelet transform on the torus B (T¢). Further, convergence
structure for the wavelet transform on B (T9) is discussed and an inversion formula
is obtained for the same.

Let S(R) and SR x R, ) be the Schwartz testing function spaces. The space
consists of rapidly decreasing smooth functions on R and R x R; with compact
support and hence, their dual is the space of tempered distributions denoted by S’ (R)
and S'(R x R,).

LemmaS5 Let W : S (R) —> S'(R x R,) be a continuous, linear map such that for
f € S'(R) its wavelet transform is defined by

(Wf), ¢) =(f, W*®), Vo e SR x Ry). (42)
The space of tempered generalized quotients is denoted by Bg ) and let o =
(a1, -+, aq), where «;is a non-negative integer. Then,
N a [e3] 8 og
el =a1+a+---+a; and D* = — | - | — .
8x1 axd

Letx = (x1,---,xg) e RYand y = (y1,--- , y4) € R?, such that
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x-y=xiy1+---+xsyq, and x| =+x-x.
Now, a complex-valued infinitely differentiable function is rapidly decreasing if

sup sup (1+x7+---+x3)" [D*f(x)| < 00 (43)

|a|<m xeRd

for every non-negative integer m. Further, let S(RY) be the space of all rapidly
decreasing functions on R?.

Let A be the class of pair of sequences defined by

A={((f), M) : (f)) CT, (m) € A}.

An element ((f;), (17;)) € A, is said to be a quotient of sequences also denoted by
ﬁ, if
Ni o

fi*xnj=fi*n, Vi,jeN 44)

Two quotient of sequences ﬁ and 8i are said to be equivalent if
i i

fix&j=gj*m;, Vi,jeN. (45)

The equivalence class including L is represented by |: /i :| and are called generalized

quotients. The collection of all generallzed quotients is given by B(F (S, %), %, A).A

function f € I can be identified as a generalized quotient ], where (7;) € A

i
is arbitrary. The space of generalized quotients has two convergences which are
defined as follows.

Definition 7 (A-convergence) A sequence {X; } 2, in B(E'(R)) is said to A-
converge to X € B(S'(R)), represented by X; Ax , if there exist (n;) € A such
that (X; — X)xn; e I'foralli e Nand (X; — X)»n; - 0in T asi — oo.
Definition 8 (3-convergence) A sequence {X:}172, in B(S'(R)) is said to §-converge
to X € B(S'(R)), represented by X; 2 X, if there exist (7;) € A such that X; »
njeland X «n; eI, Vi,jeNand X; »n; - X *n;inT"asi — oo.

Mikusinski [9] introduced the space of tempered generalized quotients denoted by
B([R) = B(S'(R), (D), %), *, Ag) and the family of sequences (¢,) from D(R)
such that

l. [pen(x)dx =1,foralln €N,
2. fR |@n(x)|dx < M, for some constant M > 0 and all n € N,
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3. The support of ¢,, decreases to 0 as n — oo.
3. S(¢n) — 0asn — oo, where S(¢,) = sup{|x| : ¢, (x) # 0}.

The generalized quotients space BR x Ry) =BES'(R x
Ry, (D), *), ®, Ag) or simply B has been constructed by Roopkumar

Fi

[21]. Every generalized quotient in 8(R x Ry) is of the form |:—:|, where
ni

Fie BRxRy), VieN, () €Agand F; ®6; = F; ®§;, Vi, j e N.

The space D(R?) consists of smooth functions with compact support which are
rapidly decreasing on R?. The dual space of D(R?) is the space of distributions
denoted by D'(RY).

The wavelet transform (Wf) of f € S'(R?) is the tempered distribution defined by
(W), 0) =(f. W¢). Vp € SR x Ry). (46)

In this section, we introduce the space of generalized quotients on the torus given
by Nemzer[10]. The space of torus is defined by

T — {(eixl’_.. ,eixd) DXj real}.

A function on 7¢ and on R? will be treated same, which is 27 -periodic in each
variable. For f € 7, define

T f(x) = f(xr + 27, -+, xq + 2m).
The translation operator 1, can be extended to By as follows:

T f n i|
(2%

For F = I:ﬁi| we have 1o, F = [

n

Thus, 1o, F is a tempered generalized quotient.
The space of generalized quotients on the torus Bs (T¢) is defined by

Bs(TY) ={F € B: 15, F = F}. 47)
Lemma 6 Let F = |:£i| € B. Then F € Bs(T?) if and only if for alln € N, f,
©n
is 21 -periodic in each variable.

Definition 9 Let F = |:(];—":| € B. Then F € Bs(T?) if and only if for all n € N,

n
fn 1s 27 periodic in each variable.
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The wavelet coefficient of ¢ on T¢ is defined by

Cjx(®) :/¢(x)¢j,k(t)dt» (48)
Td
where j € Zandk € J = {0, ...,2/ — 1}9.
Theorem 9 Let F' = I:ﬂj| € Bs/(T?), thenforeach j € Zandk € J the sequence
Pn

{Cix(@n)} -, converges.

Proof For F = [ﬂ} € Bg(T)? and { (,0,,};0_1 be a delta sequence, then there exist
P =

n
a natural number p such that ¢, # 0 and ¢, — 1 as p — oo.
For j € Z and k € J, consider

Cj,k(¢11) = Cj,k ([M})
p

[ Cik(@n *gop)}
= _—(pp
_[Cix(dp *%)]
= _—(pp
-Cj,k(¢p) & Pn

_ —] . (49)
L Pp

Cix(dp)

Therefore, (49) converges to |:—:| as n — oo. Hence, the theorem is
@p
proved. O

n

Definition 10 For F = [%} € Bs (T?), the wavelet coefficient of the generalized

n

quotient F' is defined by
Cjk(F) = lim C;4(¢).

Theorem 10 Let F € By (T?). Then

(WF) =) "> Cix(F)s(x —k,y — j).

JEZ kel

Proof The proof of this theorem is given in [29]. (]

The next theorem shows that the wavelet transform maps B (7%) onto S'(R? x R.)
such that the space of hyperfunctions on 7¢ can be identified with a proper subspace
of Bs(TY).
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Theorem 11 The wavelet transform is a bijection from Bs (T?) onto S; (R? x Ry),
where S (R4 x R.) is the collection of all distributions of the form Zj Do aikd(x —

k,y—J).

Proof The proof of this theorem is given in [29]. O

6 Conclusions

In recent years, the theory of generalized quotients and their integral transforms has
become an active and important part of the theory of generalized integral transforms.
The study of generalized quotients and its spaces has given substantial support to the
study of applied functional analysis. Mikusiriski and his associates described differ-
ent classes of generalized quotients on transform, viz., Fourier, Laplace, Radon, and
Zak. Kalpakam and later extended this theory of generalized quotients on Fourier
transform, Hilbert transform and Weierstrass transform. In this chapter, a uniqueness
theorem is proved for the wavelet transform for the quotient space of analytic func-
tions. Further, the wavelet transform is studied on the space of generalized quotients
on the torus. This generalized space contains the space of periodic hyperfunctions
and space of distributions. We have successfully derived the corresponding wavelet
inversion formula by involving wavelet coefficients on the torus. It may be con-
cluded here that the employed wavelet transform method in this chapter is a very
efficient technique and could lead to a promising approach to function spaces on
other domains, like locally compact groups and manifolds. The wavelet theory has
been applied widely in many fields, such as signal analysis and processing, image
compression, pattern recognition, detecting the mutation signal and so on.
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Certain Image Formulae )
of the Incomplete I-Function Under oo
the Conformable and Pathway Fractional
Integral and Derivative Operators

Manish Kumar Bansal, Devendra Kumar, and Junesang Choi

Abstract Inthis paper, we establish several interesting image formulae of the incom-
plete /-function under the conformable and pathway fractional integral and derivative
operators. Since both the incomplete /-function and the conformable fractional inte-
gral and derivative operators are very general among special functions as well as
fractional integral and derivative operators, the main results presented here can give
a number of specific identities, some of which are explicitly demonstrated in the
corollaries.

Keywords Incomplete /-functions + Mellin-Barnes-type contour - Fractional
integral operator * Fractional differential operator + Pathway fractional integral

2010 Mathematics Subject Classification: Primary 26A33 - 30E20 Secondary
33E20 - 33C60

1 Introduction and Preliminaries

Numerous scholars have studied and developed various special functions over the
years, including incomplete 8-functions [1], incomplete 7-functions [2], incomplete
H-functions [3], Fox’s H-function [4-6], Mittag-Leffler function and its extended
variants [7—12], and others. Numerous researchers have investigated the aforemen-
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tioned functions and given a number of their properties (see, for example, [13—16]),
and they have been extensively used in the areas of engineering and applied sci-
ences (see, for example, [17-23]). Bansal and Kumar [2] recently introduced the
(F)Ig;:g(;s(w) and (V)Ig;:gus(w) families of incomplete /-functions. Incomplete /-
functions are an extension of Saxena’s /-functions [24]. Several special functions
may be produced by specializing the parameters of the incomplete /-functions (for
example, incomplete H-function, H-function, Mittag-Leffler function, etc.).

The following Mellin-Barnes-type contour integral is used to define the incomplete
I-function:

(') ym,n _ () ym,n
Lo, qus(W) =""1p g, [w

(ar, a1, w), (@, %)2n, (@, Otié)n+1,pg:| )
(bj9 Bj)l,m, (bjﬁs Bj()erl.qg

1
=5— | xG ww * dg,
TUL I

where
r—a —og,w I_IZF(l —a; —o;E) [[ T'(b; +B;8)
i= j=1

x (& w = (@)

=1

Pe qQe
|: [T T +aie®) ] F(l—bje—ﬁjez):|

i=n+1 j=m+1

Here, the following conditions are satisfied:

(i) ¢t = /=1, w € C\ {0}, the multiple valued function w S is taken as the principal
branch.
(i) uis a non-negative real number, m, n, py, g, are non-negative integers such that

0<n<p, 0<m=<q ((els:={keN:1<k<s}).

(iii) oy, B;, e, B¢ are positive real numbers, and a;, b;, a;¢, bje € C.

(iv) The contour £ of integration in the complex &-plane is an infinite vertical line
which runs from y — tcotoy 4 too, for some y € R, (if necessary, it is indented)
so that singularities of I'(1 — a; — o;€) (i € 1,_n) lie entirely to the right of the
contour and the singularities of I'(b; + B ;&) ( j € I,_m) lie entirely to the left of
the contour.

(v) The integrand y (£, u) has simple poles. An empty product is interpreted to be
unity.

(vi) Here and elsewhere, let N, Z;, R, R*, and C denote the sets of positive inte-
gers, non-positive integers, real numbers, positive real numbers, and complex
numbers, respectively, and also let Ny := N U {0}.

The following are the convergence criteria for the integral in (1) (see [2]): Let
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n m Pe e
Qy I=ZOC,'+ZBJ'— Z g — Z Bje 3)
i=1 j=1 i=n+1 j=m+1
and
m n Qe Pe 1
E = ZbJ—Zai—i— Z bjg— Z Cliz-l-z(pz—qw (561,5'. 4)
j=1 i=1 j=m+1 i=n+1

Then, under one of the following conditions, the integral in (1) converges:
T I
Q> 0, |arg(w)| < EQZ (Z € 1,5) (®)]
and
Q >0, |arg(w)| < %Qg, RE)+1<0 (LeTs). 6)

Numerous special functions can be obtained by specializing the parameters of the
incomplete /-function. Several of them are listed below:
1. Setting u = 0 in (1) yields Saxena’s I-function (see [25]):

Jm.n (@i, ai)1n, (@i, Olié)nﬂ,pg i| 7
Pe-Qe.S b, B)1ms Bje, Bjodmrige |

2. Putting s = 1 in (1) gives the incomplete H-functions (see [3]; see also [26]):

(ala ap, u)a (aiv ai)2,p
I“Tdn w . (®)
(bj.Bj)ig

3. Taking u = 0 and s = 1 in (1) produces the familiar Fox’s H-function (see, for
example, [4, p. 10]):

() ym,n (a1, a1, 0), (@i, a)2n, (@ies Aiednyi,p,
I Llw
Pe.Ge. b, Bi)1ms bje, Bj)m+iq
(al7 a1)5 IR (ap, ap)
= H;’d” w . 9)

(bh Bl)v ] (bq’ Bq)

4. Setting s = 1, m =1, n = p, q being replaced by q + 1, and modifying some

parameters in (1) offers the incomplete Fox-Wright W-function p\IJér) (see [3,
Eq. (6.4)]):
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1P {_ (1*al,al,u),(lfaj,uj)z,p] _ W(F)[(ulyalsu); (aj,aj)z,p;w]
p.a+1 ©.1),(1—b;.B))1q a G Bprg: "
(10)

Numerous researchers have been engaged in research on fractional calculus and its
applications. They introduced and investigated many different types of fractional
derivatives and integrals. Also, they explored many features and applications of
fractional calculus. The most widely used schemes, Riemann-Liouville and Caputo
derivatives, are utilized in engineering, mathematical physics, image processing,
biology, applied sciences, medical and health sciences, control systems, and bio-
engineering, among others [27-36].

The Riemann-Liouville left and right fractional integral operators designated o J*
and Jy and the corresponding Riemann-Liouville fractional derivative operators 4 D*
and Dy of arbitrary order are defined as follows: (see [37-39]):

1 w
oS (W) = %/ W — )" f(p)dp (k) >0, w> a); (1)

1 b
Jo (W) = %/ (b —wW)'f(p)dp (R(k) >0, b> a); (12)

oD (W) = D" J"* f(W) = 7 (%) 3w — )"~ fp)dp (13)

OR(k) =0, n = [RK)]+ 1);

D f(W) = (=DY' I f(W) = 1o (= £)" [ (0 — W)~ f(p)dp (14)
M) =0, n =[N+ D).

The left-sided and right-sided Caputo fractional derivative operators of order «
are defined, respectively, by (see [37-39]):

SDFFW) = oJi ™ FOW) = 755 [o W — )" f"(p)dp
(k) =0, n=[RE)]+1)

(15)

and

DY W) = Ty IO W) = 158 [ =W e
Nk) 20, n =)+ D.

The left-sided and right-sided Hadamard fractional integral operators designated
«J* and Jy and the corresponding Hadamard fractional derivative operators ©* and
DY are defined as follows (see [40]):
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3 w) = % / (Inw — In p)K“f(p)d—p O > 0w > @) (17)

3 Fw) = m)/ (Inp — Inw)* 'f(p) ) > 0,6>a);  (18)
d\" o

D F (W) = (Wd_w) TTFW) O > 0on = D]+ 1); (19)

L F(w) = <—wdiw) 3K F(w) R) > 0,n=[k]+1,b>a). (20)

The left-sided and right-sided Katugampola fractional integral operators desig-
nated ,Z>* and Z;"* and the corresponding Katugampola fractional derivative oper-
ators o 27 and 7y are defined as follows (see [41, 42]):

_ _ 1 w wk — pK o—1
(T f)(W)—F(G)/u ( - )
« _ 1 b pK_WK' o—1

@ f)(w)_m)/w( P )
. d
27" f) (w) = ( W) (aZ" 7% ) (W)
n—o—1
e w¥ — p dp
F(n—o)(w > . ( p ) T g

. d
(75" f) W) = ( W) («Z"7f) (W)

B W . d n b pK—W" n—o—1 dp
‘r<n—o>( dw) /w( « ) e

The left-sided and right-sided fractional conformable integral operators ¢J* and

% and the corresponding fractional conformable derivative operators § D* and °Dy
are defined as follows (see [43]):

M) >0); (21

(o) > 0); (22)

(23)

(24)

o LYW —a)f — (p— @)\ dp ) _

G rw = [ ( - ) o=t o0
(25)

- (b—w)* — (b —p)\°! dp ( ,

I fw) = m) ( : ) fOG— s (0> 0

(26)
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SO fw) =0T (5779¥) £(w)

e W w—a)f = (p— )\ dp ) :
1 ( - ) SOt O 2 0
27
ODEF(w) ="TE ("TOTE) f(w)
_ DT R - w) — (b — ) ) dp :
= ( - ) f0) G (1) 2 0).
(28)
Here
n=[NR0)]+1, BT = (T T ...oT", "TE=TETE ... T, (29)
&—},—/ D — —
n—times n—times
and
JTfW) = (W —a)' ™ f(w), TEfwW) = (b —w)'™ f(w). (30

Remark 1 The fractional conformable integral and derivative operators may be
reduced to yield the aforementioned fractional integral and derivative operators as
follows:

(i) Taking a =0, k = 1 in (25) yields the left-sided Riemann-Liouville fractional

integral operator (11);
Setting a = 0, x — 0 in (25) gives the left-sided Hadamard fractional integral
operator (17);
Putting a = 0 in (25) produces the left-sided Katugampola fractional integral
operator (21).

(i) Setting b = 0, k = 1in (26) yields the right-sided Riemann-Liouville fractional
integral operator (12);
Taking b = 0, « — 01in (26) gives the right-sided Hadamard fractional integral
operator (18);
Putting b = 01in (26) offers the right-sided Katugampola fractional integral oper-
ator (22).

(iii) Taking a = 0, k = 1 in (27) yields the left-sided Riemann-Liouville fractional
derivative operator (13);
Setting a = 0, k — 0 in (27) gives the left-sided Hadamard fractional integral
operator (19);
Putting a = 0 in (27) produces the left-sided Katugampola fractional integral
operator (23).

(iv) Setting b = 0, k = 1 in (28) yields the right-sided Riemann-Liouville fractional
integral operator (14);
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Putting b = 0, k — 01in (28) gives the right-sided Hadamard fractional integral
operator (20);
Taking b = 0 in (28) produces the right-sided Katugampola fractional integral
operator (24).

In this paper, we aim to establish several intriguing image formulae related with
the incomplete /-function under the fractional conformable integral operators. For
our purpose, we begin by presenting some image formulae of power functions under
the conformable fractional operators, asserted in the following theorem.

Theorem 1.1 Let X(\) > 0, R(x) > 0, N(o) > 0, and a € R. Then

o ~K _ N 1 F(%—}_l) _ \ko+h .
W —a)t = ST aorl) (% i 1) wW—a) ; 3
r(:+1)
O~k W\ — "~ Nk T w)KotT.
Jp(b —w) T (% e 1) (b—w) ; (32)
o YK _ A __ 0O F(%+1) _ h—ko.
DWW —a)t =« e ozl ot 1)(W ) (33)
r(¢+1)
DX (h — A_ o~ A\« T A—ko
Dy(b —w) K T (% —-o-+-1)(b w) . 34)

Proof We find

o /W((w—a)“—@—a)“)"“ 5 dp
T WET=EG L, c -

which, upon setting u = (\f,:i)'(, yields
a)Kc-&-x l
T (W —a)t = 1—u)
ad ( ) GF(G) / ( )

Now, applying the well-known beta function (see, e.g., [44, p. 8])

fOl w1 =P du R >0, REP) > 0)
B(OL, B) = () 0 (35)
(i (e CrZ)

to the last integral, we obtain the desired identity (31).
Similarly, the other ones can be proved. We omit the details. O

Let ¢ € L(c, d), which denotes the set of Lebesgue measurable functions defined
on the interval (C, d). Then the pathway fractional integral operator P(gﬂ’“’u)¢ with
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a pathway parameter o < 1 is defined as follows (see [45, p. 239]; see also [26, Eq.
@HD:

(P0) @ =t / o [1 - w} dwydw  (36)
0

(R(m) >0, aeR", ¢ €L(0,00)).

It is easy to find the following relationship between the pathway fractional integral
operator and the left-sided Katugampola fractional integral operator:

(P Pe) = [ S mau=ra (T w. 67

(W —u)l-n
We also recall a known formula (see [45, Eq. (12)])

P TE)TA+ L)
M,0,a) 4B—1y __ 1—a
Por O = L P Ta 1+ L) %)

(a eRY, a <1, Ry >0, RP) > 0, m(l + %) > 0) .

2 Main Results

In this section, under the fractional conformable integral and derivative operators,
we establish the image formulae of incomplete /-functions.

’7I:I£1e0rem 2.1 Letu >0, %H(\) >0, R(n) > 1, Rk) >0, R(o) >0, and ackR
en

O ~K . = 1(T) ym.n ERPRYS
93¢ (W - a) I s [ =]

__ O~k _ r=1(T);mn A\
=33 (wW—-a) Ip[,%ﬂ" |:(W a)

(ar, ar, w), (@, 9)2,n, (@ig, Gg)nt1,p, :|

bj.Bj1m: Bje.BjIm+1,q,

1 LA
(ay, a1, u), (; - ;) » (@i, 9i)2,n, (@ig, %ient1,p,

X pe+1,gp+1;s

ik

A
K

-1
_ W by mong W — )"
o

(B Bjd1m: bje.Bjedm+i,qp- (% -

(39)

Proof Let L be the left member of (39). Using (25) and (1), we get

L=737" {(w—a)“—'ﬁ/sx@,u)(w—a)—“dz}, (40)
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where x (&, u) is given as in (2). Then, interchanging the order of the integrals in
(40), which can be verified under the given restrictions, we derive

1 ~K L—hE—
£—2m xEw T {w— o gE 41)

Using (31) to evaluate the left conformable fractional integral in (41), we obtain

/X(E w— F<¢+l)
T K (B o4 1)

(W _ a)K0'+|L7)\E71 d%

Finally, with the help of (2), we get the right-hand side of (39). ]

T}l;eorem 22 Letu>0, RN >0 R) > 1, R) >0, RNo) >0,and beR
Then

o —wh O [ —w)*]

Pe.Qe:s

(ar, ar, w), (a;, 9)2,n, (@ig, %ednt1,p,
=035 b —wr 1O 6 —w)h

Bj.Bjd1,m: Bbje.Bjedm+1,q,

(b —wykotnl () ym.n+1 —w*
- P pe+1.9,+1;s

(ay, oy, w), (77% *) (@i, oi)2,n, (@ig, ®edn+1, p(:|

G Bpm: BjeBjomia, (£ - % =0 %)

(42)
Proof The proof would run parallel to that of Theorem 2.1. We omit the details. [J

T}llleorem 23 Let u>0, H(N) >0, R(W) > 1, Rk) >0, Ro) >0, and a € R.
Then

oK . y—1() ym,n _ \h
9D (W — a) I e [(w u)]

= gD w— O rc‘w |:(w -t

(ar,ap, w), (@, 9)2,n. (@ig, %en+1,p, }

B Bjd1m. Gje.Bjodmt1,q,

_ m—ko—1(I") ym,n+1 _\h
=k(W—a) 1p2+1q£+15|:(w a)

@ o, (F =% 2) @ o @ giontp,
c B . . 1 1] A .
B Bjdi,m: (bje.Bjem+i,qp- (; -k to ;)

(43)

Proof Let A be the left member of (43). Using (27) and (1), we obtain

A =9D" {(w )~ 127(

/ X (& W — a)—*édz}

where yx (§, u) is given as in (2). Then, interchanging the order of the integrals, which
can be justified under the given constraints, we find
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A= ! X(E WD {(w—a)* 5 dg, (44)
2m

Using t (33) to evaluate the left conformable fractional derivative in (44) gives
—nE—1
P+

F(%“—oﬂ)

x(% Wk (W — @) oge - (45)

T
Finally, upon employing (2) in (45), we get the last equality of (43). ]

’Yl%leorem 24 Letu>0, %) >0, A(pw) > 1, Rk) >0, Ro) >0, and a e R
en

ODE (b — W)~ 1(r>1Fr)nr(11 . [(h—w))‘]

__ Ok pn—1(T) ;m,n _ by
= Db(b w) Ip( ql5|:(b w)

(ay, a1, w), (@i, 0)2,n, (@gs %t 1,p, }

B Bjd1,m: bje.Bjdm+1,q,

_ O wyRk—ko—1(I') ;m,n+1 W
=k"(b —w) Ip[+l,q6+l;5 [(b w)

(ar.oq,w), (*—% f) (aj, 0)2.n. @ig, % e)n+1, pg]

®jBjd1m, Gje,Bjedm+1,qp- (% - B4, %)

(46)

Proof The proof would run parallel to that of Theorem 2.3. We omit the details. [

3 Pathway Fractional Integral Formula

Here, we establish a pathway fractional integral formula for the incomplete /-
function.

Theorem 3.1 Lera € R, a <1, p e RN, RO > 0, R (1 + L) > 0,u = 0, and
k e R. Alsoleta; e C,o; e Rt (i=1,...,p)andb; e C,B; e RT (j =1,...,0Q)
be the same as in (2). Then

Lt o QLI B )
(,0,a) [y, 2—1() ;mn N T—a
Po+ {W [Pzﬂz;ﬁ(kw )} -

la(l —w)]*
O, ”1“ ) wht (ar, ap,w), (1 =%, ), (aj, @i)2,ns @igs %iedn+1,p, (47)
pe+1.qp+1s 11— :
e =l 1 B me (=0 = T Bje. Bjodme 1,

Proof Let L, be the left member of (47). Using (36) and (1), we obtain

L =P {w*—‘i / x(*@,u)(kw“)—ids}, (48)
2t Jo



Certain Image Formulae of the Incomplete I-Function ... 151
where Y (€, u) is given as in (2). Then, in the double integral of the right member of

(48), we interchange the order of the integrals, which can be verified under the given
conditions, to find

1 o,a — —
L, = E/EX(E’L‘) kSpy e fwh et g, (49)

Using (38) to evaluate the pathway fractional integral in (49), we get

with ] wo O\ TETO - pel (14 1)
- -£ 1—a
N i AL (a(l —oc)) Py

Finally, with the help of (1) and (2), interpreting the right member of the last identity,
we get the desired result (47). U

4 Particular Cases

Since the main identities in Sects. 2 and 3 are very generalized ones, they may produce
a large number of particular identities. Here we consider several of them as in the
following corollaries.

Corollary 4.1 Let R(Z) > 0, R(n) > 1, R(k) > 0, R(o) > 0, and a,b € R. Then

7T (W — a)“’llglgus [w—a)*]

=90 w—a)*~' e [(w -a)

(@i, @i)1n, (@ie, Qig)nt1,p, i|

Pz b, Bj)rm, BDje, Bje)m+i.q, (50)
W= ayetul \ (2 =% 2) (g, )10, @ie. %idns1p
= P ka:"l-Qk+]§5 w—a)" 1 n s
i B Lms Bje Bjdmiigs (5 — % —0, 2)
and
35 (6w e [0 —w)t]
| mn N (@i, ai)1,n, (@i, %ie)nt1,p,
=930 —w" M (b —w)
bj, Bj)rm, bjes Bje)m+1.q, (51)

(b —wyrotr! Mo+l b — w)"
- K© pe+1.qe+1;s (

(L =L %) (a0 @ie. die)nsip, i|
(bj.B)Lm. bje.Bjomsrg. (2 — & —0, 2) .

Proof Taking u =0 in the identities in Theorems 2.1 and 2.2 yields the results
here. (Il
Corollary 4.2 Let R(\) > 0, R(w) > 1, R(k) > 0, R(o) >0, and a,b € R. Then
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° D (W — u)’*’ll‘;‘:;[;s [w—a)]

=9D" (W — a)“*‘g;gﬁs [(w —a)

(@i )10, (@ig, Aig)n+1,p, :|

by, Bj)rm, Dje, Bjedm+1.q, (52)

1
_— (L= 2y (a, 010, (@ic, %iedn+1.p,
=W — @t e | W= ] .
L
i BLm Bje Bjodmitas ( — % +0, 2)

and

-1 ,
D (b —w e [0 —w)']

="Df (b — W [(b -w?*

(@i, ai)1.n, (@ie, %ig)n+1,p, ]
bj, Bi)1m, (bje, Bje)m+1,q0
(L - L 2) (a0 @ie. die)ns1pg i|

;. B)1m, bje. Bjomirg. (1 — L 40, 2)

K Kk

=06 —w) KT |:(b —w)*

(53)

Proof Setting u = 0 in the identities Theorems 2.3 and 2.4 produce the formulae
here. (]

Corollary 4.3 Letu > 0, 9%(N) > 0, %) > 1, RN(k) > 0, NR(o) > 0,and a,b € R.
Then

9w — T (W — )]

(al’ A, u)v (ai7 0Li)2,p
=90 wW - | (W —w)*

(bj,Bjq
(W _ a)KO'Jerl I \ (als A, u)v (% - %9 %) s (aiv OLi)Z,p
= lprign | W—0) . .
i Bras (z =% =0 %)
(54
and
T (b —w) TR (b — w)*]
(alv A, u)a (aiv 0‘1’)2,p
=056 =W | (6 —w)
(ij Bj)l,q
I _u l) (a;i, o)
(b_W)KG-HL—l (alyalvu)a (K PRV A i Xi)2,p
= Tetian [ (0w

K-U

b5, Be (e = % =0 %)

K

(55)

Proof Using the identity (8), we can get the desired results directly from Theorems
2.1 and 2.2. (]

Corollary 4.4 Let R(N) > 0, R(n) > 1, N(k) > 0, R(o) > 0, and a,b € R. Then



Certain Image Formulae of the Incomplete I-Function ... 153

DKW — )T (W — )]

) § (a, a1, U), (@i, 0i)2p
oK —1m,n
= 7D W — )" T | (W — a)

bj,Biig

1 A
(ar, a1, w), (£ =B, 2) (a;, 0)2p

= k(W —a) T | (w— o) 1 )
by B (e — % +0.%)
(56)
and

D6 —w) TR [0 - w)*]

= 9D (b —w)* gy |:(b —w)*

(al,otl,u),(ai,di)z,p:|

;. Bj1.q
1_ k2 o
(ay,ar, u), (K v K) (@i, %)2,p
_ —ko—1m,n+1 py
= k(b —wh o Ir L e —w) e
bj.Bj.q (; i ;)
(57)
Proof With the aid of (8), we can derive the desired results directly from Theorems
2.3 and 2.4. O

Corollary 4.5 Let 9i(N) > 0, R(w) > 1, R(k) > 0, R(o) > 0,and a,b € R. Then

0TW — ) T HI (W — a)*]

(@i, ai)1,p
=93 wW— )" THTY | (W —a)*
(bj,Bjg (58)
W — )yt y (£ =% 2) (@, 0)1p
I — Hyl g | (W—a) ] .
(b]a Bj)l,Q7 (; - % — 0, ;)
and
Ty (6 — WM HT [(6 — w)]
(a;, a)1,p

=T —w T H | (b —w)*
®j,Bj)1q (59
L 2y (g
_ (b — W)K0+M71 Hm’”“ b L (K K’ K) ’ (Cl,, OL,)l’p
= o Tetlatl (b—w) | N
®jsBras (z =% =0 %)
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Proof Setting u =0 and s = 1 in the results in Theorems 2.1 and 2.2 yields the
desired identities here. ([l

Corollary 4.6 Let R(X) > 0, H(pw) > 1, N(k) > 0, N(c) > 0,and a,b € R. Then

D W — )T HT (W — )]

1 y (@i, o) 1,p
__ oy —1 zym,n
=:D"(w—a)t Hyy' | (W—a)

bj, Biig

1 A
1 (I =% %) (@, o)ip
=W — " HIT [ w—a)
' 1 _ A
(bj.Bj)1q: (; - To ;)

(60)
and
Db — w)' T Hy" [(6 = w)']
(@i, ai)1p
=Dy (b —wW)" T HI | (b —w)"
(bja B])l#q
(% — B3 (@, a)ip
=«%(b — W)WKU?]HF;&TEH ©—w"
b B (x — % +0.7)
(61)

Proof Taking u =0 and s = 1 in the identities in Theorems 2.3 and 2.4 gives the
desired results here. ]

Corollary 4.7 Leta € RT, o < I, p € RT, (W) > 0,% (1 + =) > 0,u = 0, and
k e R. Alsoleta; € C,o; e RT (i = 1,...,p),andb; e C,B; e R (j =1,...,0Q)
be the same as in (2). Then

L gL
,P(gn,a,u) [W)\_llm’n (kW“)} _ w F(l—(x +1)

Poe [a(l — )"
ai, %) 1n, (1 = A, @), (gie, dig)nt1,
o % (@5, o) 1ne (1= 2 1), (@i, g,
(b, B)rms (= = 7=, 1), (Bje, Bj)ms1.q,
(62)
Proof Putting u = 0 in Theorem 3.1 produces the desired identity here. (I

Corollary 4.8 Letu >0, R(A) > 0, R() > 1, R(k) > 0, N(o) >0, and a € R
Then
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0,k v u—1(I") ym,n S 0,k v —1(I") ym,n A
0Z%*w AU [w] = oT%*W AU [w

(a1, a1, w), (@i, &)2.n, (@ie, %ig)n+1,p; ]

by, Bi)rm, (bje, Bje)mt1.q,
(ar,ap, ), (£ =L 2) (g, )2, (@ie, %e)nsLp :|

Ko+p—1
_w () ym.n+1 wh
- O pe+1.9¢+1:s

(. BLm. Bje. Bjdomrrg (£ — & —0, 2)

(63)
and
Ty (w0 (W]

Pe,Qess

= Zg* (—wyr e [(—w)k

(ay, a1, u), (@, @)2.n, (@it %ie)n+1,p; ]

by, Bj)rm, Dje, Bjedmt1.q,

I
(Wl N (ar,ar,w), (£ =L 2) (g, a)2n. (@ie. die)ns1p,

= e Ipistqeis | (5W) L R
B Bdim: bje.Bjiomrig. (3 — & —0. %)

(64)

Proof Taking a =0 and b = 0 in the results in Theorems 2.1 and 2.2 gives the
desired identities here. (]

Corollary 4.9 Let u > 0, #(\) > 0, H(pw) > 1, R(k) > 0, R(o) > 0, and a € R. Then

Jowr= 1Ot [wh] = gowr 1@ |:wk

(ay, a1, u), (@, @)2,n, (@it %ie)n+1,p; ]

Pe.des s pe.Ge; s
o o bj,Bj)1.m: (bjes Bje)m+1.q,
o () ML s (ar, ar, u), (1 —w, N, (@i, @;)2.n, (@i, %ie)n+1.p;
=wrrt IPeY-H,qz-*—l;s w . (65)
b, Bj)rm, bje,Biodmetg, (1 —p—0,N)

Proof Puttinga = Oandk = 1intheresultin Theorem 2.1 yields the desired identity
here. |

5 Concluding Remarks

Classical special functions and polynomials, their numerous generalizations and
variations have acquired great reputation and significance owing in particular to their
proven applicability in diverse and broad areas of science and engineering. In this
paper, we established several interesting image formulae of the incomplete /-function
under the conformable and pathway fractional integral and derivative operators. As
shown in Sect. 1, since both the incomplete /-function and the conformable fractional
integral and derivative operators are very general amid special functions as well as
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fractional integral and derivative operators, the main results presented here can give
a number of particular identities, some of which were explicitly demonstrated in the
corollaries. More particular formulae of our main identities can be provided.
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Explicit Exact Solutions )
and Conservation Laws of Modified « e
Equation

Sachin Kumar and Divya Jyoti

Abstract The invariant solutions of generalised modified o equation are obtained
by using the Lie classical symmetry method. The obtained solutions are in terms
of trigonometric functions and hyperbolic functions. This equation can be used in
solidifying and nucleation problem. The conservation laws are obtained by using the
multiplier approach. The graphical representations are also shown for some of the
obtained solutions. Some new solutions of those equations are found that have been
considered earlier in literature, as well as some of the previous solutions can also be
recovered by taking particular values.

Keywords Modified o equation - Lie classical method - Infinitesimals * Invariant
solutions - Solitons - Conservation laws
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1 Introduction

Nonlinear science is important for studying the various nonlinear physical phenom-
ena [10, 16]. It possesses both scientific and practical significance in various fields
like engineering, finance and many other. The analysis of solutions of nonlinear
differential equations is very significant to solve numerous problems. Sumudu trans-
form method, Homotopy perturbation method [6], fractional natural decomposition
method [20], Lie symmetry method [4, 9, 15, 19] can be used to solve these nonlinear
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differential equations [7, 11, 12]. The Lie symmetry method is the more powerful
method. This method has been used by Kumar [14] to find invariant solutions of
Biswas—Milovic equation.

One of the most important equation, named, shallow water equation, is extensively
applied to represent the environmental science, fluid dynamics and some other fields.
Tsunami is also a sort of shallow water [5]. Thus, finding the exact solutions of these
equations has become an important task.

A class of nonlinear shallow water wave equations

Up — Uyyr + (@ + Dutty — ittty — utty, =0, (D

is known as « equation. Here, the unnamed function u(x, t), denoting the dimension
of the relevant wave mode, is a function of two independent variables x and ¢ that
specify the space variables in the flank of wave publicity and time, respectively [2].
Also, the term u,,, represents disbandment wave effects, uu, and uu,,, represent
the nonlinear wave steepening and « is any real constant. Chang et al. [5] performed
Lie symmetry analysis and bifurcation analysis for this class of equations. In 2006,
Wazwaz [21] studied this important family of physical equations by changing the
nonlinear convection term uu, into u?u,, i.e.

Uy — Uxxr T (Ol + 1)M2ux — QUxUxxy — Ulyxy = Oa (2)

which is known as modified « equation. For @ = 2, it reduces to modified Camassa—
Holm (CH) equation and for &« = 3, it reduces to Degasperis—Procesi (DP) equation.
The modification cause changes in the physical characteristics of the solutions from
multi-peakon solutions into bell-shaped solitary wave solutions [3]. Wazwaz [21]
obtained the soliton solutions of (2) using tanh method and sine-cosine method.
Baskonus et al. [2] also obtained mixed dark-bright soliton solutions as well as
complex soliton solutions of (2) by using sine-Gordon expansion method.
In this paper, the generalised modified o equation is considered as

u; — bu g + (@ + l)uzux — QU Uy — CUU e = 0. 3)

This equation is a tactical application for outlining the method of phase dissociation
in cold steel alloy and is generally used in solidifying and nucleation problem [2].
The exact explicit solutions of (3) are obtained by using the Lie symmetry method.
The solutions are obtained in terms of trigonometric functions and hyperbolic func-
tions. The graphical representations are also shown for some obtained solutions. The
conservation laws [1, 13] of (3) are also obtained by using the multiplier approach.
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2 Symmetry Analysis

The Lie classical method [19] is used in this section for symmetry analysis in order to
solve the above nonlinear PDE (3). Consider the Lie group of point transformations

x*=x+eE(x,t,u) + 0(e?),
t*=t+et(x,t,u)+ O, “)
W =u+en(x, t,u)+ 0>,
such that if u satisfies (3), then u* also satisfies (3). The invariance condition is
n' = b+ (o + 1D Quuxn + un®) = aCue™ + uxen®) — c@n™ + uxrxn) = 0.
4)
By substituting the values of extended infinitesimals, a set of determining equa-
tions were obtained. The infinitesimals £, 7, 7 obtained by solving the determining
equations [4] are found as
E=C, 1=C, n=0, (6)
where Cy, C, are arbitrary constants. The corresponding vector fields are
Vi=0d, Va=0,. (N
Corresponding to the vector field V; + € V,, the similarity variables [14] are

r=x—e€t, u=g)), (8)

where r is new independent variable and g is new dependent function. Back substi-
tuting these variables in Eq. (3), the reduced ODE is obtained as

(@+1)g*g —ag's" —eg' +beg” —cgg” =0, 9)

where ' denotes the differentiation with respect to r.

3 Exact Solutions

In this part, the exact solutions of ODE (9) are obtained in the form of hyperbolic
and trigonometric functions by using Maple.
Equation (9) possesses travelling wave solutions as
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g(r) = Cycsc*(Car + C),

1 —6C%Ol + Cya + Cy
=
aC2 12C2

_ ! 2 0?4 2
, €= 9(604C4C2 +aCy +Cy),

(10)
where C, C, and Cy are arbitrary constants. Thus, the exact solutions of generalised
modified o Eq. (3) are

with b= —

(i) u(x,t) = Cycsc>(Ca(x — et) + Cy), with

1 —6C3a + Csa + Cy C, 5
= ——, = ,6:—6C+C+C
ac? ¢ 12C2 g GrCatatstCy
(11)
Similarly, the other exact solutions can be obtained as
(i) u(x,t) = Cysec*(Ca(x — €1) + Cy), with
1 —6C3a + Cyo + Cy Cy
b=——, c= 2 , €= —(6aC? +aCs+ Cy),
4C2 12C2 g (06 it
(12)
(i) u(x,t) = Cycot’(Co(x —et) + Cy), with
6C§0[ + Cya + Cy —6C§a + Cya + Cy
= , C = .
2C3(6C3a + 4Cqa + 4Cy) 12C2 (13)
C
€= 34(605C§ +4aCy + 4Cy),
(iv) u(x,t) = Cscsch’(Ca(x — €1) + Cy), with
1 —6C3a + Cya + Cy Cy (14)
b=—, c= 2 , €= —(6aC? +aCy+ Cy),
4C2 12C2 g (062G s+

(v) u(x,t) = Casech’(Co(x — €t) + C;), with

1 6Csa + Csa + Cy Cy 5

= —, = — . G:——60lC +aC +C N

ac? € 12C2 g (6xCy +aCit )
(15)

(i) u(x,t) = Cscoth’(Co(x — €t) + C;), with
6C§O[ + Csa + Cy —6C§Ol + Cha + Cy
= — . C = .

2C3(6C3a + 4Cqa + 4Cy) 12C2 (16)

c
€= ?4(6aC§ +4aCy +4Cy),

where C;, C, and C4 are arbitrary constants.
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3.1 Special Case:b=1, c =1
For b =1, ¢ = 1, the ODE system (9) reduces to

(O{ + 1)g2 g/ _ Otg/g// _ Eg/ + 6g/// _ gg/// =0. (17)

Equation (17) possesses solutions in terms of doubly periodic Jacobi elliptic sine
function. Thus, the corresponding solutions to modified « Eq. (2) are

u(x,t):2a+2<M—a—1+4(01+2)C32<_1_C12+3C12
C (&
X sn> <—3tM+ —3(2x —ar —1)+ Gy, C‘)))’
2 2 (18)

1
with € = Z(on —2M + 20+ 4),

where M = \/(oc +1)2 — 16aC5(a + 2)(C} — C? + 1),

where C;, C; and Cj; are arbitrary constants.

4 Conservation Laws

In this part, the local conservation laws [8] of generalised modified o equation (3)
are obtained by using the multiplier approach [18]. Consider a multiplier of the form
A(x,t,u, uy, uy,). The simplified determining equations to be solved are

Ay, =0, A,=0, A,=0, A, =0 A, =0. (19)

Uxx

The solution of above determining equations (19) yields A = C;. Thus, the conserved
fluxes [17] in accordance to this multiplier are

Tr Zu_buxm

I o . (20)
T, = —cuuy, — E(a —cuy + g(a + Du’.

5 Results and Discussions

The graphical representations of solution (15) are shown by considering particular
values of arbitrary constants. These graphical representations depict the 3D and
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(a) 3D plot (b) Contour plot

Fig. 1 3D plot and contour plot of solution (15) with C; =0, C; = % Cy=2, a=2
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(a) 3D plot (b) Contour plot

Fig. 2 3D plot and contour plot of solution (15) with C; =0, C; = %, Ci=2a=3

ool

contour plots of (15) for different values of «. For o = 2, Fig. | represent the graph
of solution of generalised modified o Eq. (3) and of modified CH equation. For
a = 3, Fig.2 represent the graph of solution of equation (3) and of modified DP
equation. Figure 3 represent the graph of solution of Eq. (3) for « = 4. These graphs
represent the soliton solutions for different values of «.

Remarks:

1. Ontaking C; =0, C, = %, Cy = gEZ—ﬁ% in solution (14), the solution reduces to

one of the solutions of general modified DP-CH equation, as obtained by Wazwaz
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4

L

(%]

0 2 3 6 8 1 12
(a) 3D plot (b) Contour plot
Fig. 3 3D plot and contour plot of solution (15) with C; =0, C; = %, C4 = -2, a =4

[21]. For @ = 2, itreduces to the solution of modified CH equation and for o« = 3,
it reduces to the solution of modified DP equation.

2. On considering C; =0, C, = %, Cy = —ggg—ﬁg in solution (15), the solution
reduces to one of the solutions of general modified DP-CH equation, as obtained
by Wazwaz [21]. For o = 2, it reduces to the solution of modified CH equation
and for o = 3, it reduces to the solution of modified DP equation.

3. Onletting €, =0, C; = 3, Cs = =353, @ = 4, in solution (15), the solution
reduces to one of the dark soliton solutions of modified & equation, as obtained
by Baskonus [2].

4. Solution (18) represents the new doubly periodic solution of equation (2) consid-

ered by Wazwaz [21].

6 Conclusion

The explicit exact solutions of generalised modified & Eq. (3) have been obtained by
using the Lie classical symmetry method. The solutions (11)—(16), (18) have been
obtained in terms of trigonometric functions and hyperbolic functions. Also, some
new solutions of equations, considered in literature (2), have been obtained in terms
of doubly periodic Jacobi elliptic functions. The general form of equation considered
here (3) is useful to obtain new solutions of the existing equations in literature (2),
as well as to obtain solutions of some new equations, for different values of b and ¢
in (3). The conservation laws (20) have also been obtained by using the multiplier
approach. The graphical representations of some of the obtained solutions depict the
solitary wave solutions.
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Some Approximation Results on m
Durrmeyer Modification of Generalized oo
Szasz—Mirakjan Operators

Rishikesh Yadav, Ramakanta Meher, and Vishnu Narayan Mishra

Abstract This paper deals with the approximation properties of the summation-
integral type operators defined by Mishra et al. (Boll Unione Mat Ital 8:297-305,
2016). It consists of the local results and convergence theorem of the defined opera-
tors. Here, we discuss the asymptotic behaviour of the operators and the quantitative
means of Voronovskaja type theorem is obtained. In this direction, we determine the
Griiss Voronovskaya type theorem. Graphical representation is given to support the
approximation results of the operators and, at last, conclusions are given.

Keywords Szisz—Mirakjan operators + Rate of convergence - Voronovskaya type
theorem - Lipschitz space

1 Introduction

In 2016, Mishra et al. [12] carried out their works on approximation properties for
the operators defined by

S8 x) =ty Y 81, (X) / Su,j (D (D)1, (1)
0
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where s, j(x) = e " it (“”") and u, — 0o as n — oo with condition u; = 1, here
the functions are con51dered to be Lebesgue integrable. By simple calculation, if we
take u,, = n, then the above operators (1), reduced into Szasz—Mirakjan Durremeyr
operators defined by Mazhar and Totik [8]. The important properties of the defined
operators are studied by Mishra et al., which can be applied to the operators defined
by Mazhar and Totik. Regarding the approximation of the function by Durrmeyer
type operators, as well as with the other approximation properties, many works have
been done in this direction [10, 11, 13, 18].

Also, the discussion regarding Durrmeyer-type modification of Szasz—Mirakjan
operators is seen in [8] where the authors gave a vital result for the Durrmeyer type
operators, which are defined on [0, c0) as

(o]

An(g: ) = gO)5,0(0) + 1Y 5, (x) / Snj-1 (D)1 @

j=1

All the above operators (1, 2) are generalized form of the Szdsz—Mirakjan operators
[9, 15] defined by

SM(g:x) = 3 5a;(X)8 (%) , 3)
j=0

where s, ; = 7™ = (”") is the Szdsz—Mirakjan basis function. Also, a natural gener-

alization of the Szasz—erakJan operators can be seen (presented in [3]) in the form
of strictly increasing sequence as a simple replacement of n by u,, such that u; = 1
and u, — oo as n — oo in the above operators (3), and hence the modification can
be seen in the form of

Si(g: ) =) 50, ()8 (%) ' “
j=0 "

Thus, the works have been done by Mishra et al. [12] for the above operators (1)
on the natural modification of the operators defined in [8] called as Szasz—Mirakjan
Durremeyr operators which put a crucial impact in the theory of approximation. For
further proceeding to study the approximations properties of the operators (1), we
need some basic lemma.

Lemma 1 Consider the function g is integrable, continuous and bounded on the
given interval [0, 00). Then the central moments are as

@n,m = Uy Zsun,j(x)fsun,j(t)(t - )C)md[, (5)
Jj=0
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where m =0,1,2,.... So for m =0, 1, we can get the the central moments as
follows:
1
Guo=10,= o (6)

in general, we have
UnOp i1 =X (O +2mOy 1 + (1 + m)Op ) , (7)
this lead us to
Opm = O (u;[”T“]) . 8)
Remark 1 For all n € N, we have

2(1 + u,
im 1, @, > = lim 20+ %) _
n—00 n—00 U,

2x. 9)

2 Local Approximation Properties

Next, we estimate the approximation of the defined operators (1), by a new type of
Lipschitz maximal function with order r € (0, 1], defined by Lenze [7] as

(g, x) = sup B =8I (10)

x,5>0 |u - U|r
Using the definition of Lipschitz maximal function, we have the following theorem.
Theorem 1 For any g € Cg[0, 0o) withr € (0, 1], then one can obtain
|83 (g: x) (g5 x) — g(0)| < k(8. %) (On2)? .
Proof By Eq. (10), we can write

S5 (g: %) — g < & (g, ) SE(Ju — v]"; x).

Using, Holder’s inequality with j = %,l = ﬁ, one can get

[STh]

|S7(g5 1) (g5 %) — ()] < ke (2, %) (ST ) (0 — )% 1)) = k(g %) (O2)

Next theorem is based on modified Lipschitz type spaces [14] and this spaces is
defined by
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ap,a

" (s):{gec’g[o’oo)ﬂg('d)—g(v)lsM movl
(u + v2a; + vay)®

Lip

where u, v > 0 are variables, s € (0, 1]},

here, ay, a, are the fixed numbers and M > 0 is a constant.

Theorem 2 For g € Lipy;“(s) and 0 < s < 1, an inequality holds

1S5 (g1x) — g0)| < M (L) Mo
(v + a2)

Proof Since s € (0, 1], so we have two cases on s.
Case 1. For s = 1, it can be observed that

1 1 o, . .
t+x2a;+xaz) = x(xai+az) and it lmphes

|S3(g: x) — g(0)| < Si(lg(r) — g(x)]; x)

" |t — x|
<MS, -3
(t+x2a1 —l—xaz)E
M *
< — St —x|; %)
(x(xay + az))?

M

(NI

1
@nZ 2

® <M|[——— .
(On2)" = <x<xa1+a2>)

Case 2. For s € (0, 1) and using Holder inequality with [ = %, m=

S 71
(x(xa; +az))?

2
s we get

5 12 %
85060 — 8@ = (S8 — g1 0)" < Ms; ((“—’”) x>

t+x2a, + xay

< MS* |t_x|2 ‘X : <M @11,2 %
"\ (xxar + @)’ - '

x(xa) + az)
Thus, the proof is completed.

Theorem 3 For the continuous and bounded function g defined on [0, 00), the con-
vergence of the operators can be obtained as

lim S;(g; x) = g(x), (11)
n—00

uniformly on any compact interval of [0, 00).

Proof Using Bohman—Korovkin theorem, we can get our required result. Since
lim S7(1; x) — 1, lim S (¢; x) — x, lim S;’;(tz; x) — x2, and hence the proposed
n— 00 n— o0 n—oo
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operators Sy (g; x) converge uniformly to the function g(x) on any compact interval
of [0, 00).

3 Asymptotic Behaviour of the Operators
To check the asymptotic behaviour of the operators, we shall prove the Voronovskaaya
type theorem.

Theorem 4 Let us consider the function g is integrable, continuous and bounded on
[0, 00), as well as the second derivative of the function, exists at a point x € [0, 00).
Then the convergence of the operators can be obtained as

im u, (Sy(gsx) — g(x)) = g'(x) +xg"(x). 12)

Proof Using the Taylor’s series expansion, one can write

1
gt) —gx) =t —x)g'(x) + S = )% () + ¢, x)(t —x)%,  (13)

where ¢ (¢, x) be such that lim¢ (¢, x) = 0. Applying the proposed operators to the
—>Xx
above Eq. (13), we get

g’ (x)

S S = 0% 0+ 857 (ca 0@ -07)  (14)

S¥(g:x)gt) —gx) = g @)t —x;x) +

Here

S (¢, 0 —x)?) < \/S;f (222, %)) S* (1 — x)*) (15)

Using Theorem 3, we get

lim S (¢t x)) = ¢*(x,x) = 0. (16)

And using Lemma 1, we have

St —x0Y =0 u,?), (17)
thus
lim S} (¢(t, x)(t —x)*) =0 (18)

Therefore, from Eq. (14) and Lemma 1, one can write
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Tim u, (S(8: 0)g(1) — g(x)) = g'(x) +xg" (x). (19)

Hence, the required result is obtained.

4 Quantitative Approximation

Since we have already discussed the Voronovskaya type theorem and here we shall
determine quantitative means of the Voronovskaya type theorem for the proposed
operators. Before, proceeding on the main results, we need some functions classes,
which are defined below

B,[0,00) ={g:[0,00) > R| |g(x)] < Mw(x) with the supremum norm

lgllw = sup % < +o0}, where M > 0 is a constant depending on g and the
x€[0,00)

spaces
Cyl0, 0) = {g € B, [0, 00), g is contiuous},

Ck 10, 00) = {g € C, [0, 00), lim ls@l _ ky < 400},
x—00 w(Xx)

where w(x) = 1 4 x? is a weight function. Here, the weighted modulus of smooth-
ness is defined in [6] and is denoted by A(g; &), given as

h) —
A 6) — g0+ h) — g(x)|

g€ Ckl0,00), £>0. (20)

The properties of the weighted modulus of smoothness are as
SliH}]A(g; §)=0, 2n
and

A(g;né) <2(1+n)(1 +&HA(g; ), n>0. (22)

Remark 2 By above relations (22) and (20), one can write

lgt) — g(x) < (1 + (t —x)) (1 +x)A(g; |t — x])
<2 (1 LI ; x') (1+EHAg &)+ (1 — ) (1 +x?).

Theorem 5 For the function g € CX [0, 00) and assuming g" (x) exists at a point x,
the following inequality holds:
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’ " 1 1
|57 Cas %) — g(x) — gu(x) - gu(x) (x + u—)‘ — o)A (g \/;) 23)

Proof By Taylor’s series expansion, one can obtain

g"(x)
2

gt) —g(x) =g' ()t —x) + (t —x)* + (%), (24)

where (t, x) = g”(%;!g”m (6 — x)?>and 6 € (¢, x). Applying operators (1) and mul-

tiplying by u,, on both sides to above expansion, we obtain

* / * g”(x) * 2 *
up |Sy(g;x) —g(x) — g (x)S, (t —x;x) — > Sy ((F =) x0)| < unSy (5@, x)[; x)
A i
i |5 (g3 x) — gy — £ _ 8 (x + i) < unSEAE(, 1) ).
Un Up Up
On the other hand,

§"0) —g"(x)
2

IA

1 2 2 "
§(1+(6—x) Y1 +x7)Ag7, 10 — x|)

IA

1
S+ OHA+xHAE" |t —x))

< (1 |t—x| 2 2 2 "
< + 3 A4+80 4+ —x))A+x5)A", ),

and it can be written as

g" ) —g"(x) 2(1 4+ 8521 + x> Ag", 8), [t — x| <8,
| = 4 25)
2 2014 8921+ xH S Ag”, 8), |t —x| > 6.
So, for 6 € (0, 1), we get
" o _ 4
§0) s . O g1 412 <1+ ¢ 54x) )A(g”,a). (26)
Hence,
2 2 (t _x)6 7"
e, x);x) <81 +x7) | —x)" + 5 A(g", 8).

Thus, applying the proposed operators (1) to the both sides and using the Lemma 1,
we get
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Sp((t = x)% x)
)

1 1 1
<8l +xHaE" »lo|l—)+=0(—=)), asu, > .
U, 54 ul

Choose, § = \/%, then
* 1 2 " 1
S, (¢, x)|; x) <80 - (I+x7)A|g", — 27

Thus, it yields as

1
unS, (In(t, x); x) = 0(H A (g”, \/uj) : (28)

By (25) and (28), we obtain the required result.

S*(¢(t, x)|; x) < 8(1 +xH)A(g", ) (S,’f((t —x)%x) +

4.1 Griiss Voronovskaya Type Theorem

In 1935, Griiss [5], developed an inequality known as Griiss inequality after his
name, which has vital importance in the theory of approximation. It estimates with
a relation of integral of a product and product of integrals of the two function.
First of all, Gal and Gonska [2] applied this inequality on the Bernstein’s operators to
discuss the Griiss Voronovskaya type theorem, and after this significant contribution
in this direction, many researchers put their efforts to develop interesting ideas using
the Griiss inequality. In a note [4], the authors obtained a new approach with the
help of the least concave majorant by using Griiss inequality to the operators on
a compact interval. Some research regarding Griiss Voronovskaya can be seen in
[1, 16, 17, 19].

Theorem 6 If f, g € CX[0, co) for which f', f", g', g" € CX [0, 00), then for each
x > 0, an expression can be obtained, which is

im u, (S3(fgsx) = Sy (f32)8,(g: ) = 2xf"(x)g' (x). (29)

Proof For the function f, g € CX[0, co) with f7, f”, g, " € CX[0, 00), we can
write
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Fig. 1 Convergence of
operators Sy (g; x) to the
function g(x) (blue)

n (SE(f:x) — SE(f: 08 g 1) = n{ (Si:(fg; x) = F8) — (f8) Ot — @02)

2!
—g(X)<S,’,‘(f; X) = @) = f1 (Ot — %@nJ)
— S5 x>(s;f<g; X) = g(0) — g ()6, 1 — g”;;‘) @n,z)
+g”2(f) S5 =020 (f = S5 0) + £/ ()6

+8' X)On,1 (f — Si(f1 1)) }

Applying Theorem 3 for each x € [0, 00), n — 00, as well as using Remark 1,
then with the help of Theorem 5, we get our desired result.

Tim u, (S;(f8:2) = Uy (f1 )8} (g3 x)) = 2xf"(x)g' (x).

Example 1 For the approximation by the operators defined by (1) to the given
function, here, we consider the function g : [0, 4] — [0, co0) such that g(x) = &*
(blue), for all x € [0, 4]. Choosing n = 25, 50, 100 and corresponding operators are
as S35 (green), S5, (red), S}, (black), shown in Fig. 1. Here, the approach of the
operators can be seen in given Fig. 1. As the value of n is increased, the operators
approach towards the function. For large value of n, the approximation is good.

Example 2 Let the function g = x2sin 277x (blue). For the values of n=50, 100,
150, 200, 300, the approach of the corresponding operators S%,, S{o0» Si50> S300> S300
represented by pink, red, magenta, black, green colours, respectively in Fig. 2, to the
function is good for large value of n.

Conclusions and applications: Here we have determined the approximation
properties for the functions belonging to different spaces and the order of approxima-
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Fig. 2 Convergence of
operators Sy (g; x) to the i
function g(x) (blue) o1

0.0F

—0.1F
-02F
-03F

-04F

-0.6F

0.0 02 0.4 0.6 0.8 1.0

tion of the operators has been estimated. The asymptotic behaviour of the operators
is discussed and we determined the quantitative means of the asymptotic formula, as
well as proved the Griiss Voronovskaya type theorem. Finally, we have justified the
approximation results by graphical representations. Derived results are all beneficial
and these can be applied in mathematical analysis, mathematical physics and quan-
tum calculus with ¢ and (p, ¢) analogues of the proposed operators. Concerning
the proposed operators as for the applications, one can apply these in the integral
equations to solve the Volterra and Fredholm equations of the first and second kind
for the numerical approximate solutions. Also, some specific differential equations
with boundary conditions can be solved.
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Fuzzy Approach to Solve General )
De-Novo Programming Problem i

Sayanta Chakraborty ® and Debasish Bhattacharya

Abstract A General De-Novo Programming Problem (GDNPP) is a multi-objective
De-Novo Programming Problem (MODNPP) involving both maximizing and mini-
mizing type of objectives. In this paper, a modified fuzzy approach is adopted to
solve GDNPP by means of reflection of decision-maker’s choice. It is seen that flexi-
bility in decision-maker’s choice to some extent could be reflected in multi-objective
linear programming problem (MOLPP) using Meta-Goal Programming (GP) tech-
nique. This flexibility in decision process can also be efficiently incorporated using
fuzzy technique to solve GDNPP, which is achieved by introducing new constraints
as per requirement of the problem. Moreover, these constraints could be so chosen
that the highest possible number of objectives could attain their ideal values. This is
anew type of flexibility introduced in the decision process. The proposed method of
solution has been illustrated by a numerical example. Finally, the solutions obtained
have been compared with those of other existing method of solving GDNPP.

Keywords Multi-objective De-Novo Programming - Non-compensatory operator -
Ideal values - Meta-GP

1 Introduction

The De-Novo Programming Problem (DNPP) introduced by Zeleny [17] is popularly
used to design an optimal system by extending existed resources (if necessary) instead
of finding an optimum in a given system with fixed resources. The main advantage
of De-Novo Programming is that through this approach a decision-maker can obtain
trade-off free solution for its objectives. In his papers [13-23], Zeleny considered
only maximizing type of objective functions. Now there was no general method to
solve MODNPP containing both maximizing and minimizing type of objectives. But
to apply the DNPP technique for the solution of real-life problems, DNPP having
both maximizing and minimizing type of objectives, also known as General De-Novo
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Programming Problem (GDNPP), has to be considered. Later on some researchers,
e.g., Li and Lee [7], Chen [4], Nurullah [12] solved GDNPP. The first two authors
utilized fuzzy techniques for the solution of the problem by replacing the objectives by
their membership functions. While Nurullah employed min—max Goal Programming
(GP) technique for its solution, which is akin to fuzzy method. In [1, 2], authors
solved GDNPP using compensatory and non-compensatory operators under fuzzy
environment.

In fuzzy method of solution of MOLPP, the overall performance of the system
is maximized, i.e., overall satisfaction of the decision-maker is maximized. But it is
beyond the scope of fuzzy MOLPP techniques to maximize the level of satisfaction
of all the objectives separately or paying attention to a particular set of objectives for
their attainment of highest level of membership values. Also due to the conflicting
nature of the objectives, it is impossible to optimize all the conflicting objectives
simultaneously. Thus fuzzy methods of solution of GDNPP elicit solution giving
moderate values of the objectives. But decision-maker’s choice of attaining some
targeted values to a specified set of objectives could not be taken into account. This
is a drawback of fuzzy methods in solving DNPP in its true spirit.

To overcome this weakness of fuzzy method, Rodriguez et al. [9] introduced
meta-GP in 2002, based on some variants of GP, to solve MOLPP by incorporating
flexibility. Through this approach a decision-maker can set some additional goals
(which are not real goals), called meta-goals [2], to offer more flexibility for prefer-
ence expression. One of the advantages of meta-GP is that the decision-maker can
use any one of the GP variants for the solution process. The decision-maker can set an
aspiration level for each goal in the chosen GP variant. The meta-goals can be thought
of as a “secondary/derived goals” from the original set of explicit goals. So through
meta-GP approach, flexibility can be incorporated in the solution of any MOLPP. In
[9], the authors proposed three types of meta-goals for reflecting decision-maker’s
choice, which are given as follows:

Type 1 meta-goal: The pro-rata-based sum of unwanted deviations (represented
by deviation variables) should not exceed a certain bound.

Type 2 meta-goal: The maximum percentage of deviation of some goals in
concern (i.e., some of the goals) should not exceed a certain bound.

Type 3 meta-goal: Among some specifically watched explicit goals, the
percentage of (the number of) unachieved goals should not exceed a certain bound.

Finally, the authors minimized the deviations of the achievement of the meta-
goals from their targeted values using lexicographic, min—max, and weighted GP
techniques.

Butin this meta-GP method too it has been seen that if a large number of constraints
are used in the problem formulation, then the solution may render to infeasibility
[9]. So a limited number of constraints were used in the problem formulation. Due to
such constraints it has been seen that few objectives could reach to their ideal values
(as per the choice of the decision-maker), whereas the others could not and in fact
they assume worst possible values (negative ideal values).

In 2017, Zhuang et al. [25] used meta-GP technique to solve GDNPP. Here also the
authors considered three types of meta-goals as explained above. Meta-GP approach
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of solving GDNPP also suffers from the similar limitations as mentioned above. So
it would be very much pertinent and appreciable if the highest number of objectives
in a GDNPP could get to their respective ideal values and at the same time the
overall performance of the system could be maximized. With this motivation, by
annexing some additional constraints (like the secondary goals in meta-GP) to the
fuzzy method [1-3], a new method of solving GDNPP is introduced. The introduced
method inherits the merits of both of the fuzzy method and meta-GP technique to
solve GDNPP.

In literature [1, 2, 7], it has been seen that when a GDNPP is solved by fuzzy
method, then the solution yields overall satisfaction of the decision-maker in the
form of moderate objective values. However, there is no space of reflecting decision-
maker’s choice in the solution process. But generally decision-maker wants to incor-
porate flexibility in choosing certain objectives of his/her interest which he/she
intends to get to their respective ideal values [9, 25]. This is based on the ground
reality of the problem.

1.1 Research Gap

So far our knowledge is concern, as in GDNPP, the objectives are conflicting in
nature, so there exists no method available in the literature through which maximum
number of objectives could reach their ideal values and at the same time, the overall
performance of the decision-making process could be maximized. Also the decision-
maker’s choice could not be reflected in the decision-making process through the
existing approaches of solving GDNPP.

1.2 Novelty

In the present treatise, it has been seen that flexibility in the decision process could
also be embedded to fuzzy technique [1, 2, 7] of solving GDNPP by incorporating
some additional constraints as per the requirement of the problem or choice of the
decision-maker. The benefit of the proposed fuzzy method is that it maximizes the
overall performance of the system as well as satisfies the additional constraints. Also
by judicious choice of the additional constraints, the highest possible number of
objectives could attain their ideal values. The number of such objectives could be
determined and possible combinations of such objectives could also be ascertained.
This is a new type of flexibility in the decision process. The novelty of the proposed
method is threefold.

i.  First of all, it provides a way in ascertaining the highest possible number of
objectives which could attain their ideal values and their possible combinations.
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ii.  Secondly, it elicits solution with highest number of objectives attaining their
ideal values.
iii.  Thirdly, overall performance of the system is maximized.

The method has been discussed with the help of a real-life example and the
results obtained by the proposed approach have also been compared with the existing
methods.

With this aim the paper has been organized as follows:

In Sect. 1, a brief introduction of the previous works related to the proposed
approach is given. Section 2 consists of three sub-sections, namely, Sects. 2.1, 2.2,
and 2.3 where, respectively, the Zimmermann’s technique, the proposed method, and
the algorithm of the solution procedure of the proposed method have been discussed.
In Sect. 3, a numerical problem is solved using the proposed method and the results
are compared with that obtained by the existing methods. Finally, Sect. 4 includes
conclusion and the proposed future works.

2 Proposed Approach for Solving GDNPP

Before describing the proposed approach it is necessary to know briefly the
process of solution of GDNPP under fuzzy environment using Zimmermann’s
non-compensatory operator A introduced by the authors in [1-3].

2.1 Solution of MODNPP Using Zimmermann’s
Non-compensatory Operator A

To describe this method, let us first consider a GDNPP [7] as follows:

Maka = Z;l:l ijXj,k = 1,2,...,1
Min W = Z}':l cXj, s =1,2,...,r
subject to Z};l a;x; —b; <0,i=1,2,...,m (D
> pibi < B
x>0,j=12...n

Now > i, pia;j represents per unit cost of the product j. Let us denote it by a
variable v;. Then Z?:l piaj = vj, j = 1,2, ..., m. The constraints of system (1) can
be rewritten as Y i, pi 21 aiXj < D oin;pib; or, Y1 (3L piag)x; < B, that is,
Z;l=1 vjX; < B. Thus using v;, system (1) can be reframed as
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MaXZk = Z;l:leij,k = 1,2, . ,1
Min W, = Z?:l CiXj, s =1,2,...,r
subject to >, vixj < B
xj>0,j=1,2,...,n

2

In fact, systems (1) and (2) are equivalent [7].

There are n basic feasible solutions (BFSs) of system (2) which are given by
(2,0,...,0),(0, 2,0,...,0),...,(0,0,...0, 2). Substituting each of these n
BFSs to all the objectives one by one, the ideal values, that is, max (respectively,
min) values of the maximizing (respectively, minimizing) objectives could be easily
determined. These are

Let Z; = MaxZy (x) = Max(cy; VB%» cm%, . ck,,v'i") and

Wi = MinW,(x) = Min(c; VEI, 052\%, R Csnv%)' Thus, the ideal point o* of the
system for the present state is given by o* = (Z], 725, ..., Z, Wi, W3, ..., W¥).

Alternatively solving (1 4 r) single-objective Linear Programming Problems
(LPPs) independently subject to the single constraint Z};l vjXx; < B, the decision-
maker maximizes each of the objectives Z;, Z,, ..., 7Z; and minimizes each of
the objectives W, W, ..., W; to find the ideal point o* based on the present
configuration and available resources.

Further, let the pessimistic values of the objective functions obtained by Luhand-
jula’s technique [8] be, respectively, given by 21, 22, R 21, \/’\\71, Wz, el Wr. The
linear membership functions [7] for the objectives of (2) are constructed as follows:

0,.Z <7y

nz =1 2% 7 <Zi<Zk=12 .1 3)

)

Ww, = W W W< W <W,s=1,2, .1 (4)
W,—w: ’

1, W, < Wr

These membership functions indicate the degree of satisfaction of the decision-
maker for the attainment of the aspiration levels (here the ideal values) of the
corresponding objectives.

Zimmermann’s operator A = min{fz,, lw,} 1S a non-compensatory operator
because it is used to represent “logical and” or “fuzzy and”. It does not take the
maximum possible values of the individual membership functions into consideration.
Using the non-compensatory operator A for the solution of the GDNPP (2) under
fuzzy environment, the authors in [1, 2] proposed the following model:
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MaxA

subjecttor < Z=Zx k =1,2,...,1
zi—Zx

A< e We o 1,2, .., r

L 5)

YLivixi<B

x>0,/ =12 .. ..n

A e[0,1]

)

<

It has been seen that system (5) yields a solution which maximizes the overall
performance of the system, that is, yielding intermediate objective values lying
between their optimistic (here ideal values) and pessimistic values (obtained by
Luhandjula’s technique). As mentioned earlier, there is no scope of reflecting
decision-maker’s choice regarding the attainment of specific objective values. Also
the spirit of De-Novo Programming [4-7, 10-12, 17-19, 21-26] for the attainment
of as many objectives as possible to their respective ideal values under the given
budgetary provision is also not fulfilled.

2.2 Proposed Method

The method proposed here takes care of the flexibility in decision-maker’s choice
along with maximizing the overall performance of the system. This is achieved by
incorporating some additional constraints in system (5) for solving a GDNPP under
fuzzy environment.

The additional constraints are constructed as follows:

Type-I Constraint

The first set of constraints is the goal constraints representing the aspiration levels
(ideal values) of each objective. For maximizing and minimizing objectives, they are,
respectively, Zy 4+ ny = Z; and Wy— p, = W/, In [25], both positive and negative
deviation variables ny, p; (respectively, n; ps) in each of the goal constraints were
used. But here only negative and positive deviation variables, respectively, have
been used for maximizing and minimizing objectives. This is because of the simple
reason that a maximizing objective can never exceed its ideal value and minimizing
objective cannot be less than its ideal values. This will reduce the number of deviation
variables.

Type-II Constraint

The second set of constraints are formed introducing some binary variables y;, one for
each goal constraint of Type-I. The binary variable y; assuming the value 1 reflects
that the corresponding objective must not attain its ideal value, whereas y; = 0
indicates that the objective attains its ideal value. To achieve this the binary variables



Fuzzy Approach to Solve General De-Novo ... 187

are multiplied with a large positive integer (say 10 times of the corresponding ideal
value Z; or W) and are subtracted from the corresponding deviation variable n
or p,. The difference is constrained to be non-positive. Thus, the second set of
constraints could be represented as ny — 10Z}y, < 0, for kth maximizing objective
and p; — 10W*y; < 0, for sth minimizing objective.

Also if the decision-maker considers that the maximum number of unachieved
goals should not exceed a certain bound (a positive integer /) then the binary variables
introduced in Type-II goal constraints must satisfy Zf:’l y; < 1, wherel, r, respec-
tively, denote the number of maximizing and minimizing objectives of the problem.
Introducing one negative deviation variable g, the corresponding goal constraint
takes the form Zf:rl yi + B = I and it states that / is the maximum number of
objectives that do not attain their ideal values.

To embed the decision-maker’s choice in system (5), we annex the Type-I and
Type-II goal constraints to the system and also try to maximize A and minimize
B simultaneously after converting / to a dimensionless quantity. This is done by
dividing B by I. Thus, introducing the additional constraints as explained in Sect. 2.2,
the proposed method of solution can be described by the following system:

Max —g

subjecttor < Zk;/z\k,kz 1,2,...,1
z:-Z,

Af%,s:lﬂ,...,r
W

i1 Vi < B
Zi +ng = Zf
Wy — ps = W
ng — 10 x Zixy, <0
ps —10 x Wixy, <0

(6)

S+ B=1
szO,jzl,Z,...,n
ne>0k=1,2,...,1
ps =>0,s=1,2,...,r

A, B e[0,1]
vie{0,1},i=1,2,...,1+r

Again the maximization of A, the confluence of the membership functions of the
objectives tries to maintain the overall satisfaction of the decision process. So that,
the other objectives which could not have reached to their ideal values is not very far
from their targets. The algorithm based on system (6) of the proposed method is as
follows:
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2.3 Algorithm

Step I: Evaluate ideal values 7}, k = 1,2,...,1and W},s = 1,2, ..., respec-
tively, for the maximizing and minimizing objectives and calculate the corresponding
BFSs using the process as explained in Sect. 2.1.

Step 2: Place the results obtained in Step 1 in a tabular form. From the table, check
the number of objectives who have attained their optimal values for each BFS. From
this the maximum number of objectives (A say) which could reach to their ideal
values corresponding to a particular BFS is found, A =1+r1 — L

Step 3: Construct Type-I goal constraints Zy + nx = Z; and W,— py = Wi,
where ng and pg are, respectively, the negative and positive deviation variables, k =
1,2,...,1;s=1,2,...,r1.

Step 4: Introduce (1 4 r) number of binary variables y;, one for each of the (1+r)
number of objectives and then formulate corresponding goal constraint ZE yi+B =
L.

Step 5: The deviation variables introduced in Step 3 are constrained as ny —
10Zfyx < 0and p; — 10Wy, < 0.

Step 6: Annexing the introduced goal constraints in system (5) formulate system
(6) where instead of maximizing \, N — % is maximized. Here at the same time \ is
maximized and B is minimized.

Step 7: Finally, solve system (6) by using LINGO 18.0 software.

The applicability of the proposed method has been discussed with the help of a
real-life example.

3 Numerical Example

Let us consider a numerical problem from example from [25]. In the problem, there
are three maximizing objectives Z, Z,, and Z3 and two minimizing objectives W and
W, in three decision variables xi, X, and x3 with x; > 60,1 = 1, 2, 3. So the system
has (f) = 3 BFSs, given by (as explained in Sect. 2) x; = 98.7, x, = 60, x3 = 60;
x; = 60, X, = 60, x3 = 60 and x; = 98.74189, x, = 60, x3 = 109.1.

Next is to find the optimistic and pessimistic values of the objectives. We calculate
the value of each objective at each of the BFSs. The calculations are shown in Table
1. The optimistic values are shown in bold face and the pessimistic values are bold
and underlined.

From the table, it is clear that the ideal values of the objectives are given by

Z; = 6812.192, Wi = 8.376, Z% = 11630184885, W} = 900,
Z: = 8753585.276, Z; = 1518.896

The pessimistic values of the objectives are determined using Luhandjula’s
technique [11] and are given by
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Table 1 Calculation of optimistic (ideal) and pessimistic values of the objectives

Basic feasible Optimal values of the objectives
solutions
X] X2 X3 Z, Zy Z3 Z4 Wi |[W,

98.7 |60 60 6812.2 | 11,630,184,993.1 |8,753,585.3 | 14712 | 9.6 |1047.2
60 60 60 5340 8,680,929,660 6,871,620 1200 8.4 1900
60 60 109.1 |6370.3 |9,648,039,659 8,222,953.4 | 15189 |11.6 |12434

(Zi = 5340, W, = 11.5993, Z, = 8680929660, W, = 1243.426,
75 = 6871620, Zs = 1200).

From the table, it is clear that for the given problem the maximum number of
objectives which could attain their respective ideal values is 3, since for the solution
x; = 98.7419, x, = 60, x3 = 60, three objectives, namely, Z, Z,, and Z3 achieved
their respective ideal values. Thus, maximum number of unachieved goals, I =
@4+2)—3=3,A=14+r—-1=3.

Thus, for the given problem the proposed method yields the following model:

B
MaxA — 5

; 7,-5340
subject 10 A < &5 55530

A 11.5993—W,

— 11.5993—8.376
A< 7, —8680929660

— 11630184885—8680929660

1243.426—W,
A= 1243.426-900

7;—6871620
A= 8753585.276—6871620

Z4—1200
A = 1375 596-1200

Fuzzy Goal Constraint

47806358.75x; + 42740622.5x, + 37751198.75x3 < 9550000000 Budget Constraint

Z; +n; = 6812.192
W1 — Ny = 8.376
Z, +n3 = 11630184885
W2 — Ny = 900
Z3 +ns = 8753585.276
Z4+ne = 1518.896

Type-I Constraint
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n; — 68120}/1 <0
n, — 80}/2 <0
n3 — 116301849330y; < 0
ng —9000y4 <0 Type-II Constraint
ns — 87535850ys < 0
ng — 15180y6 <0
Yo vi+p=3
X1 > 60

X, > 60 ¢ Hard Constraint
X3 > 60

n>0,i=1,2,...,6
» e [0, 1]
yi€{0,1},i=1,2,...,6

Solution

By LINGO 18.0 software the solution of the above model is given as follows:

A =0571,B =0,Z; = 6812.192, W; = 9.573, Z, = 11630184885, W, =
1047.219, Z3 = 8753585.276, Z4 = 1471.193, n; = 0, n, = 1.197125, n3 =
384.2183,n4 = 147.2192, ns = 0.255, ng = 47.70274,y; = y3 = ys = 0,
Yo =Y4 = Y6 = 1, X1 = 9874189, Xy = 60, X3 = 60.

Ithas been seen that three objectives Z1,Z,, and Z3 have reached to their respective
ideal values and the other objectives assumed moderate values as reflected by overall
satisfaction (A — %) = 0.571. A comparison of the solution obtained by the proposed
method and that by Zhuang et al. [25] is furnished in Table 2. It clearly shows that
the proposed method yields better solution.

From the comparison table, it is clear that both meta-GP approach and the proposed
approach yield same optimal objective values for the given example.

Table 2 Comparison of solution obtained by different methods

Objectives Ideal values Meta-GP approach Proposed approach
7, 6812.1922 6812.1922 6812.1922
7 11,630,184,993.06 11,630,184,993.06 11,630,184,993.06
73 8,753,585.31 8,753,585.31 8,753,585.31
Zy 1518.896 1471.1933 1471.219
Wi 8.3760 9.5731 9.573
W, 900.00 1083.2192 1047.219
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But through the meta-GP approach, neither the overall performance of the
decision-making process could not maximized, nor the number of objectives which
could reach to their ideal values could be identified. On the other hand, as the
proposed approach is a fuzzy approach, so the value of A = 0.571 indicates that
the overall satisfaction of the decision-making process is fulfilled. At the same time,
y1 = y3 = ys = 0 are indicating that their corresponding objectives, that is, Z;, Z,,
and Z3 have reached to their ideal values. Also through the proposed model, it could
be identified that total number of unachieved goals will be 3.

4 Conclusion

A fuzzy method of solving GDNPP was proposed by the authors in [ 1-3]. To incorpo-
rate flexibility in decision-maker’s choice, the said fuzzy method of solving GDNPP
has been modified in this paper. Here, by incorporating some additional constraints,
decision-maker’s choice regarding the objectives and their attainment to the respec-
tive ideal values has been achieved. In the process, maximum number of such objec-
tives could also attain their ideal values. To validate the applicability of the proposed
method, a numerical example has been solved and compared with meta-GP approach.
It has been seen that the proposed method yields same solution as that of meta-
GP approach. Also, the proposed approach indicates that the maximum number of
unachieved goals is three and the value of N = 0.571 indicates that half of the total
number of objectives, that is, three objectives could reach to their ideal values. The
most promising advantage of this approach is that apart from the desired flexibility
to reflect the decision-maker’s preference, the overall satisfaction of the decision
process could also be maintained. It has been seen that for each GDNPP, all the
objectives may not attain their ideal values. Only a certain number of objectives
could reach to their ideal values. But the very essence of DNPP is to lead all the
objectives to their respective ideal values. In future, this could be investigated either
by sensitivity analysis or by investing more resources in terms of investment of
more budgets. This approach could be applied to solve any real-life problem which
could be modeled as multi-objective optimization problem, like resource allocation,
academic planning, budget allocation, etc. In this regard, the parameters could be
chosen as triangular or trapezoidal fuzzy numbers.
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Classification Models for Diagnosis L
and Prediction of Breast Cancer

Hemangini Mohanty and Santilata Champati

Abstract Nowadays, breast cancer is creating wea big problem for women all over
the world. Correct and early prediction of disease is very much important for the treat-
ment of curing the disease. Women identified at the stage of benign have high chances
of getting curable but identifying at the stage of malignant is regarded as a dangerous
state of cancer. Many machine learning algorithms are used for the diagnosis of
breast cancer effectively. In this article, eight classification models such as Logistic
Regression (LR), K-Nearest Neighborhood (K-NN), Decision Tree (DT), Random
Forest (RF), Artificial Neural Network (ANN), Gaussian Naive Bayes (NB), Support
Vector Machine (SVM), and AdaBoost classifier are used for predicting two classes,
i.e., benign and malignant. To choose the best fit classification model for predic-
tion, a confusion matrix is used to evaluate the performance of each model. Also,
parameters such as accuracy, precision, recall, specificity, F-measure, and Matthews
correlation coefficient (MCC) are discussed for each model. For experimental results,
the Wisconsin Breast Cancer Diagnosis dataset and Coimbra Breast cancer datasets
are used, and at last, a comparison is being done for all of these models.
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1 Introduction

Breast cancer is the most commonly occurring cancer disease among women world-
wide [1, 2], and about 10% of women is getting affected by breast cancer disease
at some stage in their life [3]. Among all types of cancer, it is the second most
common cancer overall and in countries like Belgium, Luxembourg, Netherlands,
etc., the number of affected women by breast cancer is very high [4]. Approximately,
2 million women are diagnosed in 2018 around the world and 140 out of 148 coun-
tries worldwide are frequently diagnosed with this cancer [5]. In the last few years,
the rate of increase of this disease is found to be 0.5% per year [5]. The chance of
women will die is about 1 in 39 in breast cancer disease. This disease can be curable
if detected early. If a woman is diagnosed at the benign stage, then she must be
curable and the death rate by this disease can be reduced [6]. So, early diagnosis
of this disease is very much important. Data Mining (DM) methods can be helpful
to classify a patient as benign or malignant. In many health databases, these DM
techniques are proved to be predicting accurate class labels of many diseases [1, 7,
8]. Many researchers are using these techniques to improve the correct prediction of
the disease and also to reduce the false-positive and false-negative rates [1].

Supervised learning is a machine learning process that has labeled data. That
means you have to train the machine using existing classified data which is well
labeled. This will help you to predict the class labels of unknown data [9, 10]. In
medical fields, all datasets are well labeled. Hence, a supervised learning algorithm
helps to develop predictive models to give accurate prediction results [8]. Classifica-
tion is a supervised learning process of analysis of datasets by constructing models
which describe important data labels [2]. It helps to predict the class labels of new
data. It has many applications like medical diagnosis, fraud detection, performance
prediction, and target achieving in the market, etc. [8, 10, 11]. In predicting the class
labels of a woman affected by breast cancer as benign or malignant classification is
the most suitable technique as the dataset is labeled. There are many classifiers used to
predict class labels such as Decision Tree classifiers, Random Forest, Bayesian classi-
fiers, Support Vector Machine, K-Nearest Neighborhood, Artificial Neural Network,
Logistic Regression Model, and AdaBoost classifier [8, 12].

In this article, the authors discussed eight classification models to predict the class
labels of breast cancer by analyzing the dataset collected from the UCI machine
learning repository [13]. In the next sections, related works of these techniques,
the working methods of these techniques have been described. Then, to choose the
best model confusion matrix is used to evaluate the performance measure of all the
models. One least-studied classification method named AdaBoost classifier is used
to build a model. At last, the comparison of all these eight models is done. In the last
section, a conclusion is made.
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2 Literature Review

Nowadays, many researchers are applying machine learning techniques to the health
database to predict the accurate class labels of disease diagnosis. Many classification
algorithms such as DT, Logistic Regression, Random Forest, SVM, and ANN are
used to develop a model for prediction of disease diagnosis and to select the best
classifier for breast cancer prediction a comparison is also made by their model
performance. Ahmad et al. [ 1] proposed three classification models such as DT, ANN,
and SVM for predicting breast cancer disease and comparing their performance
on the Iranian Centre for breast cancer program from 1997 to 2008. The authors
have shown that SVM is the best classifier among all three models and it gives the
highest accuracy 97.1%. Bazazeh et al. [3] made a comparison of three popular ML
techniques such as SVM, RF, and BN to Wisconsin original breast cancer dataset,
and their results have shown that RF classifier performs better to classify between
benign and malignant. They have compared the value of precision, recall, and ROC
area of these three techniques to choose the best classifier. Scientific Committee
[8] showed that the voting classifier gives 98.90% accuracy to predict the class as
benign and malignant. They have also made a comparison of other classifiers such
as Gaussian naive Bayes, logistic regression, neural network, and SVM which gives
93.61%, 97.80%, 98.40%, and 98.50% accuracy, respectively.

3 Data Mining Techniques

Supervised learning and unsupervised learning are two types of learning mechanisms
in machine learning. In supervised learning, all data are labeled and so it is easy to
classify some new datasets into labeled data. But in unsupervised learning, no labeled
data are present, and classifying some new data is a difficult task. In supervised
learning, the classification task is mostly found. Mainly, classification is the task of
predicting new data into existing labeled data.

Here, we have discussed different steps involved in eight classification models in
classifying datasets.

3.1 Logistic Regression (LR)

To predict a data value based on prior observations of a dataset, logistic regression is
mainly used which is a kind of statistical analysis method [8]. This is mainly used for
classification problems. It helps to find a relationship between a dependent variable
(target) and one or more independent variables (predictors) where the dependent
variable is categorical/nominal. The logistic regression model makes a model which
predicts the probability of a given data entity belongs to the class label. This model
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uses the sigmoid function, which takes any real value between zero and one, i.e.,
o(t) = 247 = = [14].

3.2 Decision Tree Classifier (DT)

A Decision Tree is a supervised learning method which is in the tree form that maps
instances to their target value beginning from the root to leaf [1, 12]. It uses a top-
down approach which starts from the root as training tuples and the nodes represented
associated class labels of training tuples. Mainly it is a graphical representation for
predicting class labels by using a solution to a decision based on certain conditions
[11]. This algorithm performs the following steps:

e The tree starts with a root node that represents the entire dataset.

e Then using attribute selection measure (ASM) it selects the best attribute in the
dataset for splitting. It tells the best way to split the dataset into individual classes.

e Using the splitting attribute, the nodes are labeled and generate the decision tree
node.

e Using the subsets of the dataset, make new decision trees. Continue the process
until the tree cannot further classify the nodes and the final node gives the class
labels which is called a leaf node.

3.3 Random Forest (RF)

Random forest is one of the ensemble techniques that bag decision trees from multiple
subsets of a given dataset [1, 3, 8]. This method aims to reduce overfitting to the
training dataset. The algorithm consists of two parts:

e Split the dataset into many subsets based on its features and then build a decision
tree classifier.

e Bag all the classifiers obtained from every subset and classify the test data. Based
on voting or average method classify the data.

3.4 Support Vector Machine (SVM)

SVM is a discriminative classifier that intakes training data. The algorithm results
an optimal hyperplane that classifies the data points [1, 7]. The advantage of this
method is that it classifies both linear and nonlinear data [3]. This method works in
following steps.
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e [f the data are linearly separable, then using support vectors are used to define a
margin. Support vectors are those vectors that are equal distances from both sides
of the margin.

e Now, it finds a linear optimal hyperplane that acts as a decision boundary sepa-
rating all the tuples from one class label to another class label. This hyperplane is
the linear separating plane with maximum distances between the nearest support
vectors.

e In case of data which are not linearly separable, then a nonlinear mapping is used
to transform the original training data into a higher dimension. After data are
converted to linear separable form, similarly using support vectors a maximum
margin hyperplane can be found. This hyperplane is corresponding to the nonlinear
separating hypersurface in the original space.

3.5 K-Nearest Neighborhood (K-NN)

K-NN is a supervised learning algorithm used for classification. It is instance-based
learning which uses specific training instances for the prediction of class labels
without having a model formed by using the dataset [11]. It uses lazy learners who
don’t require any model for prediction and the classifier makes a prediction based
on the local information [15]. K-NN classification algorithm is performed using the
following steps:

e To classify a new sample to a class label, calculate the distance from the sample
point to all other sample points in the data. You can use any distance metric like
Euclidean distance or Manhattan distance for calculation.

e Choose the number of K-neighbors you want to take into consideration.

e Now, find the K-neighbors of the new sample point and rank the points by
increasing order.

e Take the majority of these K-neighbor’s sample points and assign the new sample
point into the majority class label.

3.6 Artificial Neural Network (ANN)

The artificial neural network is a classification algorithm that assigns weights to each
input nodes to predict the output class labels [8]. It is designed as a human brain. All
the nodes in the network are called artificial neurons that are connected by edges.
Each node is assigned some initial weight. This model computes the output value
by using a weighted sum of its inputs nodes and subtracting a bias factor from the
sum. These artificial neurons have specified threshold values such that if the output
value crosses the threshold value, then the output value will be calculated [1]. This
algorithm works as follows:
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e In the input layer, all the input nodes are connected to the hidden layer through
an edge. All input nodes are assigned some weight randomly.

e Then, calculate net input y;, by adding a bias “b” to all input nodes after weights
are multiplied with them individually.

Yin = Xjwy + xows +b

e The output of the network is given by y = f(y;,), where f(y;,) is the activation

1 lf Yin > 0
function defined as f(yi,) =30 if —0 <y, <6
—1lif yi, <—6

e Here, 0 is the fixed threshold.

e [f the calculated output is equal to the actual output, then the process stops.

e Otherwise, the weights of the input nodes will be adjusted based on the learning
rate if an error has occurred for a particular training sample. The updated weight
is

w;(new) = w; (old) + a.t.x;

b(new) = b(old) + a.t,

where ¢ is the target output value and « is the learning rate defined by the user.
e Continue the process till the calculated output is equal to the actual output.

3.7 Gaussian Naive Bayes (NB)

Gaussian Naive Bayes is a variant of Naive Bayes classifier which works on contin-
uous data and data are distributed to a normal (or Gaussian) distribution [8]. Naive
Bayes classifier is a supervised machine learning algorithm based on the Bayes
theorem. Gaussian distribution depends on two parameters such as the mean and the
standard deviation and there is no covariance between dimensions [8]. The algorithm
works as follows:

e First, determine the prior probability of given class labels.
e Then calculate the mean and standard deviation of each attribute. Determine
likelihood probability with each attribute for each class.

e The likelihood of the attribute is P(x;|c) = \/ﬁaz : exp(—(x’é;—’;f')z).

e Find posterior probability using the Bayes formula.
P(C|)C) — P(xilc) P(c)
Px) -
e Here, P(c|x) is the posterior probability of class (c) at a given attribute (x).
P (x;|c) is the likelihood probability of a given class.

P(c) is the prior probability of class.
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P (x) is the prior probability of attribute.
Assign the input to the higher probability class.

3.8 AdaBoost Classifier

Adaptive Boosting or AdaBoost classifier is an ensemble technique that combines
multiple weak classifiers to create a strong classifier to increase the accuracy of the
model [11]. It is an iterative process that follows a decision tree model with a depth
of one single node. AdaBoost works like the forest of stumps by putting less weight
on those who give correct predictions and more weight on those who incorrectly
classify instances [16, 17]. This algorithm will be working as follows:

Initially, each sample is assigned identical weights in the dataset and the initial
weight is calculated by 1 divided by the total number of samples.

The AdaBoost classifier used a decision tree as its base learners. Each decision
tree is created with one node and two leaves referred to as stumps. Then random
samples are used to fit in the model and predict the class labels for each sample
in the original data.

Now the total error is calculated. The sum of weights of incorrectly classified
records is the total error and the value will always lie between 0 and 1.
Calculate the significance of the base learner by using the following formula:

1 — total error
total error

1
Significance = Elog(

Using the value of significance update the weights of each sample. The weights
of the sample which classifies correctly decrease their weights and increase the
weights of the sample which misclassifies the sample by the following formula:

e For correctly classified samples: new weight = weight x e*isnificance,
e For misclassified samples: new weight = weight x esignificance,
e Normalize the new sample weight so that their sum is equal to 1. To normalize

weight, divide the new weight by the sum of the updated weights.

Now make the second stump in the forest by using normalized weight. A new
dataset was created based on the newly updated sample weight. Hence, the
misclassified samples have a higher probability of getting selected. Repeat steps
(ii) to (vi) and update the weights for a specified number of iterations.

In the last step, use the forest of decision trees to make final predictions on data
outsides of training data.

After applying all these classification models in the Breast Cancer Diagnosis

dataset, a comparison of performance measures of these models plays a very signif-
icant role. To find out the best classification model accuracy is a measure to be
calculated and it is determined by the number of correct predictions divided by the
total number of sample size. A confusion matrix is another most popular method
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Table 1 Confusi.o n matrix Predicted class label
for a binary classification
Benign Malignant
Accurate class | Benign True positives | False negatives
label (TP) (FN)
Malignant | False positives | True negative
(FP) (TN)

used for calculating various performance measures of a classification model [8, 11,
18]. It is a specific table that is used to estimate the performance of an algorithm.
Mainly, it is used to summarize the performance of a classification algorithm. Here,
each sample can be classified into two classes: benign and malignant. The matrix is
consisting of four elements (Table 1).

TP (True Positive)—Patients who are sick correctly predicted as sick.

TN (True Negative)—Patients who are healthy correctly predicted as healthy.

FP (False Positive)—Patients who are healthy incorrectly predicted as sick.

FN (False Negative)—Patients who are sick are incorrectly classified as healthy.

Using these four basic factors other evaluation measures can be evaluated to
measure the goodness of the classification model.

1. Accuracy: Accuracy is a measurement of how well a model can correctly predict
the class label of their actual class label [3, 8, 18]. It is calculated by the number
of correct predictions divided by the total number of samples.

TP+TN
Accuracy = —N (1)

2. Precision: Precision is the rate of correctly predicted positive class labels from
the total number of predicted positive classes [3, 8, 18].

.. TP
Precision = ———— 2)
TP+FP

3. Recall/sensitivity: It is the effectiveness of a model how well it predicts the
positive class labels from the total number of actual positive classes [3, 18]. It
is also known as the true positive rate.

TP
Recall = — 3)
TP+ FN

4. Specificity: It is the rate of the correctly predicted negative class label from the
total number of the actual negative class label [1, 8, 18]. It is also known as
selectivity or true negative rate.

TN
Specificity = ———— 4)
P Y= FP+TN
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5. Misclassification error rate: Error is classifying a sample belonging to a positive
class into predicted as a negative class label or belong to negative class into
predicted as positive class label [ 11]. The error rate is the percent of misclassified
samples out of the total samples in the dataset.

Error rate = 1 — Accuracy 5

6. F-measure: Itis ametric that takes into account both precision and recall. Mainly,
it is the harmonic mean of precision and recall [8, 18, 19].

precision X recall
F-measure = 2 x — (6)
precision + recall

7. Matthews correlation coefficient (MCC): Biochemist Brian W. Matthews has
introduced this correlation coefficient in 1975 [19]. This coefficient is used
as a measurement of the quality of binary classification and the coefficient is
considered as a balance measure where the classes are of very different sizes.
The MCC is a correlation coefficient that lies between —1 and 1 from the actual
and predicted binary classifications. —1 represents total disagreement of actual
and predicted class, O represents no better than random prediction, and +1
indicates a perfect prediction. The coefficient can be determined by using the
following formula [19]:

TP xTN—-FP xFN

MCC =
JTP+FP)TP+FNYTNTFP)IN +FN)

)

4 Results and Discussion

In this section, we have shown the experimental results of these eight classification
techniques incorporated in the proposed datasets.

4.1 Data Pre-processing

In this article, we have used the most popular dataset Wisconsin Diagnostic Breast
Cancer (WDBC) from the machine learning repository of the University of Cali-
fornia, Irvine [13]. WDBC data was taken from the University of Wisconsin, Dr.
William H. Wolberg, W. Nick Street, and Olvi L. Mangasarian. In this dataset, a total
of 569 instances and ten real value attributes, and one outcome variable are present.
This dataset represents two types of cancer patients, i.e., benign and malignant can
be diagnosis by ten input features. There is no missing attribute value contained
in the dataset. From 569 instances, 357 instances are benign and 212 instances are



202 H. Mohanty and S. Champati

malignant. Also, three indicators are measured which are presented in the dataset:
mean, standard error, and maximum value. So, there is a 569 x 32 matrix from which
we remove two attributes that represent ID and Diagnosis. Now the present matrix
has 569 x 30. To reduce the dimensionality of the dataset, we used Principal Compo-
nent Analysis (PCA). Using PCA we found that only two principal components
retained approximately 99.8% of information from the original dataset. After that,
we split the dataset into training data (455 instances) and testing data (114 instances).
Then, the eight classification models were performed to the training data and testing
data. All the algorithms are successfully run in Python 3.3 and using the confusion
matrix model performance was measured. Then, we consider another breast cancer
dataset from the Faculty of Medicine of the University of Coimbra (CBC) to test our
result validation. This dataset contains 116 instances and 10 attributes. There are no
missing values found in the dataset. The same procedure has been applied for data
pre-processing. All the results are described below.

4.2 Results and Discussion

To evaluate the performance measure of each classification model, a confusion matrix
is used. From the matrix, parameters such as accuracy, precision, recall, specificity,
and F-measure are evaluated and shown in Table 2. From the above table, one can
observe that the AdaBoost classifier gives the highest accuracy (98.6%) and least
error rate (1.39%) among all the eight models. Then RF gives 97.2%, both K-NN
and ANN have 96.5%, and LR and SVM both have 95.8% accuracy. DT classifier
showed the lowest accuracy 95.1%. After the AdaBoost classifier, the RF classifier

Table 2 Performance analysis for WDBC dataset

Parameters | Method

LR DT RF SvC K-NN | ANN | GAUSSIAN | AdaBoost

NB

Accuracy |95.8 95.1 97.2 95.8 96.5 96.5 95.8 98.6
(%)
Precision | 95.6 96.59 96.7 95.6 95.65 94.68 |96.62 98.87
(%)
Recall (%) | 97.75 93.54 98.87 97.75 98.87 1 96.62 98.87
Error rate 4.19 4.89 2.79 4.19 3.49 3.49 4.19 1.39
(%)
Specificity | 92.59 94.44 94.44 92.59 92.59 90.74 |94.44 98.14
(%)
F-measure | 96.66 95.04 97.77 96.66 97.23 96.62 |97.26 98.87
(%)
MCC 0.9109 | 0.8963 | 0.9404 | 0.9104 | 0.9257|0.9268 | 0.9107 0.9702




Comparative Study of Eight Classification Models for Diagnosis ... 203

120
95.8 95.1 97.2 95.8 9.5 9.5 95.804 98.6
100 — —— —
76
80 69 69
59 59 59
60 52 55
40
48
41 45 41 41
20 31 3
4.19 4.89 2.79 4.19 3.49 3.49 4.19 1249
0 o= P —
LR DT RF SVM KNN ANN Gaussian NB  AdaBoost
=@=Accuraccy WDBC «=@==Frror Rate WDBC Accuracy CBC «=@==FError Rate CBC

Fig. 1 Accuracy and error rate of WDBC and CBC dataset

gives the second highest accuracy with the second lowermost error rate (2.79%).
From all other classifiers, both K-NN and ANN give an equal error (3.49%) and LR
and Gaussian NB give 4.19% error. DT classifier gives the highest error rate, i.e.,
4.89%. Graph of accuracy and error rate of each classifier have been shown in Fig. 1.

Also, from Table 2, it has been observed that the AdaBoost classifier gives the
highest value, i.e., 98.87% for F-Measure. It shows that the average rate of precision
and recall for predicting the actual positive class is approximately high. Hence,
AdaBoost classifier is considered the best classifier for predicting the actual positive
class. Again, it is observed that from the specificity value AdaBoost classifier is
considered as the best classifier among all these classifiers because it is used to
predict correctly the actual negative class, i.e., 98.14%. It gives the highest correlation
coefficient, i.e., 0.9702. According to all these parameter considerations, it can be
concluded that AdaBoost is the best classifier among all these eight classifiers. After
that RF, ANN, K-NN, Gaussian NB, SVM, LR, and DT classifiers performed well
to predict the class label for each sample sequentially.

Next, we have applied all the eight classification algorithm on Breast Cancer
dataset from University of Coimbra. Since the dataset is very small dimension as it
has only 116 instances and 10 attributes, the classification models are underfitted.
But apart from that among all the classifiers AdaBoost classifier has performed well
for classifying the patients. This model gives the highest accuracy of approximately
76% with precision 0.72, recall value 0.67, and Matthew’s correlation coefficient is
0.4976. Then RF and K-NN model gives the second highest accuracy of 69%. Then,
LR, Gaussian NB, and ANN-based classification model have approximately same
accuracy score of 59%. In Table 3, all the parameters are shown below. Therefore,
AdaBoost-based classification model has performed well both on small dataset and
large volume of dataset.
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Table 3 Performance measure of CBC dataset

Parameters Methods

LR DT RF SVC |K-NN | Gaussian NB | ANN | AdaBoost
Accuracy (%) | 59 52 69 55 69 59 59 76
Precision 0.50 0.44 0.60 0.45 0.67 0.50 0 0.72
Recall 0.42 0.58 0.75 0.42 0.50 0.58 0.0 0.67
Error rate (%) | 41 48 31 45 31 41 41 24
Specificity 0.70 0.47 0.64 0.64 0.82 0.77 1 0.82
F-measure 0.45 0.50 0.67 0.43 0.57 0.54 0.0 0.69
MCC 0.1269 | 0.0534 | 0.3913 | 0.0646 | 0.0001 |0.2163 0.0000 | 0.4976

5 Conclusion

Data mining techniques have been broadly used in the medical field and proved to be
one of the best ways to predict the desired results about the disease and analyze the
dataset as well as design a predictive model. In this article, eight classification models
are used for diagnosis of breast cancer disease, namely, Logistic regression (LR),
Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), Artificial
Neural Network (ANN), K-Nearest Neighborhood (K-NN), Gaussian Naive Bayes
(NB), and AdaBoost classifier. The principle and the methodology of each classifier
were described. To compare the performance measure of each classification model,
we use the Wisconsin Diagnosis Breast Cancer dataset and Coimbra Breast Cancer
dataset from UCI Machine learning repository.

Using the confusion matrix some evaluation measures such as Accuracy, Preci-
sion, Recall, Error rate, Specificity, and F-measure are calculated for each model.
Based on the results obtained it shows that the AdaBoost classifier is the best fit
model for classifying the cancer patient into benign and malignant class labels. It
gives the highest performance in terms of accuracy (98.6%), precision (98.87%),
recall (98.87%), and specificity (98.14%). In literature [16, 17], it is being found that
the decision tree is used as a base classifier for the AdaBoost classification model.
Although the CBC dataset was small in dimension, AdaBoost classifier gives the
highest accuracy rate among all the classification models. But, one can study other
classifiers such as SVM, RF as base classifiers to understand how they perform. Also,
this classification model can be applied to different datasets having missing values
or some noisy data and study the result. Also, by taking different training and testing
ratio classification models can be compared to validate the test results.
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Mathematical Model for Demonetization )

Check for
updates

Amidu Yusuf and Ebenezer Bonyah

Abstract Mathematical models have over the years been used to examine most
of the present economic challenging problems. In this paper, demonetization effect
on a population is examined using a compartmental mathematical model. Mathe-
matical analysis of the model reveals that there is an existence of demonetization
free equilibrium and demonetization existence equilibrium. The two equilibria are
locally and globally asymptotically stable when Ry < 1 and Ry > 1, respectively.
Moreover, numerical simulation of the model is carried out and the results show that
demonetization effect persists in the system.

Keywords Demonetization - Basic reproduction number - Stability

1 Introduction

Demonetization is a fundamental regulatory act of banning or stripping a currency
unit of its original status so that it ceases to be a legal tender [1]. The government of a
country can decide to invalidate certain banknotes or coins totally from circulation or
replace specific currency with new ones. There are numerous essential reasons why
the government of a country resorts to demonetization; some of these reasons include
to curb corruption, tackle black money, withdraw fake currency, and to stabilize the
economy [2]. Demonetization has alot of impact on the individuals living in a country.
While some of these impacts are positive, others tend to be negative.
Demonetization effect is a long-term or short-term experience basically felt by
the lower and middle income class of a country [3]. Besides, the demonetization
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effect targeted at one percent of the affluence consequently affects 99 percent of the
masses.

Demonetization effect is a long-term or short-term experience basically felt by
the lower and middle income class of a country [3]. Besides, the demonetization
effect targeted at one percent of the affluence consequently affects 99 percent of the
masses. History shows that several countries worldwide have practised demonetiza-
tion due to one reason or the other. In 1873, the United States withdrew silver from
circulation and replaced it with gold. The move was a successful effort in control-
ling black money in circulation [1]. In 1923, the government of Germany under the
Weimar Republic withdrew the old currency and replaced it with a new note called
Rentenmark. Accordingly, all old cash ceased to be legally tendered. Moreover, the
aim of such move was to combat hyperinflation in the economy [4]. India in 1946
had its first demonetization of high denominations of Rs. 1000 and Rs. 10,000. After
32 years, it was followed by a new reform which was the withdrawal of Rs. 1000,
Rs. 5000, and Rs. 10,000 from circulation. Subsequently, another demonetization
was announced in 2016 where the Prime Minister of India Narendra Modi banned
high denominations which include Rs. 500 and Rs. 1000 and were replaced with new
Rs. 500 and Rs. 2000; a move targeted at controlling black money in circulation [5].

Ghanain 1982, invalidated 50 Cedi note, an effort made toward curbing corruption,
tax evasion, and to eradicate excessive liquidity in the country [6]. In 1984, the
Nigerian government led by Muhammadu Buhari was forced to initiate an anti-
corruption crackdown which replaced the old currency with new notes. However,
the new reform failed to yield positive result on Nigeria’s economy since debt-
burdened and inflation ridden economy were not fixed [1]. Myanmar in 1987 banned
about 80 percent of its currency in circulation. The reform was directed toward the
then-existing black market. Consequently, the move triggered mass protest across
the country after 1 year of economic hardship. Early 1990s, Zaire made a move to
withdraw obsolescent currency from circulation by establishing new bank reforms.
However, the plan was not successful due to surge in inflation and a breakdown
in the exchange rate against dollar. Russia in 1991 retired large bubble bills from
circulation. The effort was directed toward curtailing black money in the economy
[6]. Europe in 2002 carried out a successful currency changeover operation. Prior to
the execution of the new reform, the European central bank had for 3 years prepared
while disseminating information about the demonetization which would take effect
in the nearest future [7]. In 2010, North Korea government mounted a reform which
knocked off two zeros in the face value of the old currency. Moreover, the drastic step
was taken in order to tighten control of the economy and to eradicate black market
[6]. Demonetization actually worked for some countries while in others, it resulted
into a total failure. However, some key factors behind successful demonetization
include proper conceptualization, adequate planning, and implementation.
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Fig. 1 Schematic diagram of demonetization effects on a population

2 Model Formulation

At a given time #, a population N (¢) is subpartitioned into five different compart-
ments. The class of individuals yet to experience demonetization is represented by
S(t) and those that are partially affected are denoted by M (¢). Similarly, the individu-
als that are potentially affected are denoted by P (¢) and the class that deposited their
money partially in a bank is represented by B, (). Moreover, those that deposited
their money fully in a bank are denoted by Bp(#). The total population is given by

N@)=S8@)+M@)+ P@)+ B,() + Bp(1).

An appropriate diagram below is used to illustrate the dynamics of the total population
(Fig. 1).

Table 1 shows a clear description of each variable and parameter used in the Model
(.

From Model (1), we derived a system of non-linear differential equations which
are
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Table 1 Variables and parameters of the model

Variables Description
N Total number of individuals in a population
S Individuals that are yet to experience demonetization effects
M Individuals that are partially affected with demonetization
P Individuals that are fully affected with demonetization
B, Individuals that partially deposited their old currency into a
bank
Bp Individuals that fully deposited their old currency into a bank
Parameters Description
A Remitted rate into the population
n Rate at which individuals opt for digital payment
@ fraction of susceptible class that are fully affected
-« fraction of susceptible class that are partially affected
r fraction of mildly affected class that fully deposited their old
currency in a bank
1—r fraction of mildly affected class that partially deposited their
old currency into a bank
q fraction of fully affected class that deposited their old currency
fully into a bank
1—¢ fraction of fully affected class that partially deposited their old
currency into a bank
Bp The rate at which susceptible individuals move into partially
and mildly affected classes
01 rate at which mildly affected class move into depositors class
162 rate at which fully affected class move into depositors class
diit) =A—-(1- oz)ﬁpMS — aﬂPSP — uS,
“ZI(” = (1 - a)B,MS —rBiMBp — (1 — r)}iMB, — uM.
dl;t(t) =aB,SP -1 —-q)PB, —qBPBp — uP, (D
@ = (1= 1BiMB, + (1 — q)5:PB, — uB,,
% = rﬁlMBD + qﬂzpBD - ,uBD

For the above system to be mathematically equipped, we subject it to the following

initial conditions:

S(0) = Sy > 0, M(0) = My > 0, P(0) = Py > 0, B,(0) = B,, >0

Bp(0) = Bp, > 0.
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The total population at a definite time ¢ is given as follows:
N@) =S8t +M(@)+ P(t)+ B,(t) + Bp(?)

and

dN (1) _ ds@) dM@) dP(t) dB,(t) dBp(t)
dt_dt+dt+dt+dt+dt’

which simplifies to

dN (1)
= =A—-ulS+M+P+B,+ Bp),
dN(1)
= A — uN. 2
7 H (2)

2.1 The Positivity of Solutions

It is essential that we investigate the solutions of each variables in Eq. (1) to make
sure that they are all positive at any given time ¢ > 0. To accomplish this task, we
apply the following theorem.

Theorem 1 The solutions of equation (1) with non-negative initial conditions will
always be non-negative for any timet > 0 [8].

Proof Lett;y =sup{t >0:8S>0, M >0, P>0, B, >0, Bp >0¢€]0,1)}.
We now consider each of the equations in Eq. (1).
For the first equation in Eq. (1), we have

ds()
dt

=A-(10-x)p,MS —af,SP — uSs.

Since at any given time ¢ > 0, the parameter A > 0 so we have

dzgt) > —[d - O‘)ﬂpM + OéﬂpP + ulS,
N ds(r) n
./0 S0 _/0 [(1 — )ByM + a8, P + pldt,

S(t)) h
In {TS)} > —/0 [(1 —a)fpM + af, P + pldt,

S(t) > S(0) exp {—/ 1[(1 — )M + a3, P +u]dt},
0

therefore,
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S(t) = S(0) exp {—/ (1 —a)B,M +aB,P + u]dt} > 0.
0

Similarly, we prove positivity for other variables M(t), P(t), B,(t), Bp(t). (I

2.2 The Boundedness of Solutions

Theorem 2 The closed set of all solutions ¢ = ( S(t), M(t), P(t), Bp(t), Bp(t), | N < é)
12

with respect to Eq. (1) is uniformly bounded [8].

Proof Suppose the set {S(t), M(t), P(1), B,(1), BD(t)} € Ri at any given time

t > 0.

We consider the rate of change of the total population N with respect to time ¢.
This is represented by Eq. (2): The integrating factor of Eq. (2) is e/”.

N(t)e'" :/Ae‘”dt,
A

N(t) = — +ce ™™,
L

where c is a real constant of integration. At initial time # = 0, the total population
N(t) = N(0), such that

A A\ _
N@t) = = + (N(O) - —) e,
p I

N(@) = N(O)e ™ + (1 — e*ﬂ’)é.
"

dN
Model (1) represents a population which varies over time, hence I # 0 so we

. . A dN
expect feasible solutions. If N > —, we have I < 0.
I

dN
The rate of change of total population I is bounded by A — uN. We now

consider using the standard comparison theorem by Birkoff and Rota (1989) so that
we have

_ A
O<N@)<NOe™4+(1—e “’)E.

But, as
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t—o00, 0<N@® <

t.|>

A A
Therefore, N (¢) < — whenever, N(0) < —. This implies that N (¢) is bounded and
L

all the feasible solutions representing human component of the Model (1) begin and
remain in the closed set £ [9]. (|

3 Equilibrium Points

3.1 Demonetization Free Equilibrium (DFE)

The DFE point is determined by setting all equations in Eq. (1) to zero and solving
for each variables. At this equilibrium point, there is no existence of demonetization
and hence the entire population are susceptible. This means that

M(t) = P(t) = B,(t) = Bp(1) = 0.

Considering first equation in Eq. (1),

ds(t
di ) =A-(0-)p,MS —af,SP—uS=0.
Since
M =P =0,
therefore,
A
St) = —.
I

A
The demonetization free equilibrium point of (1) is Hy = (—, 0,0,0, 0).
I

3.2 Demonetization Existence Equilibrium (DEE)

The DEE is obtained by setting each equation in Eq. (1) to zero and evaluating each
variable. At this equilibrium point, demonetization persists in the economy. This is
obtained from Eq. (1) when S(¢), M (¢), P(t), B,(t), and Bp(t) are all non-zeros
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and it is represented by
H*=[S*. M*, P*, B}, B}],

where

_ AB1Sa(r — q)
(1 = a)Bpop(l = 2q) + afpSip2r — 1) + pbifa(r — q)
i = P —29)

S*

C Bir—¢q)°
* u(2r— 1)
C Br—¢q)

g _ 12— — Byl(1— ) — raf]
P (=l —a)B—al —r)p
g _ M2a— D - Bjld — )1 — ) — al - )i

b (1 — B —raf '

3

4 The Basic Reproduction Number (R)

The basic reproduction number (R) is the average number of secondary effects of
demonetization caused by an affected individual who has been introduced into the
susceptible class throughout the lifetime of the affected individual [10, 11]. It is
also a threshold parameter for dissemination of demonetization effect into a com-
pletely susceptible population. To calculate (R), we consider the equations in Eq.
(1) that show the existence of demonetization and changes within the affected com-
partments. Next, we construct a next-generation matrix K which relates the number
of newly affected individuals with demonetization in various compartments of Eq.
(1). Suppose that there are n compartments and H = (Hy, ..., H,)" are the number
of individuals in each compartment, let the first m < n compartments contain indi-
viduals affected with demonetization [12]. Suppose that the linearized equations for
H,, ..., H, at Hy decoupled from the other equations and we consider the decoupled
equations as % =Fi(H)=-VjH)Forj=1,..m.

Let F; represent the rate of appearance of new effects of demonetization in com-
partment j. And V; represents the rate of other transitions between compartment j
and other affected compartments. Similarly, we defined the entrywise non-negative
matrix F and the non-singular M-matrix V
where F = [M} and V = [w} for j,k=1,..,m.

OH,, OH;

The next-generation matrix is determined by K = FV ™!, this gives the rate at

which the affected individuals in H; compartment becomes potentially affected in
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H; compartment. Ry is determined as Ro = p(K), where p denotes the spectral
radius of the next-generation matrix [13].

/ dH
Assume that H' = (M, P, B,, Bp, S), H = — = F(H) — V(H).

Considering the compartments that disseminate demonetization from Eq. (1). We
decompose the equations into two parts where the first part shows appearance terms

and the second part shows transition terms of demonetization effects. From Eq. 1,
we have equations which reveal effect of demonetization. These are

M
dt(’) = —a)B,MS —rBiMBp — (1 —r)3iMB, — uM.

dP(1)
o = BpSP — (01— @) PB, —qBPBp — uP.

Decomposing the two equations into two parts gives
F_ Fi|l [Ad—aB,MS
- fz , - aﬂp SP

V_|:V1:|_|:r61MBD+(1_r)/61MBp+MMi|
D | A =q@)BPBy+qBPBp + P |°

The Jacobian matrices are obtained as

oM OP oM OP
F = and V =
oM OP oM OP
_|d=ap,s 0 _|rBiBp+ (0 —=r)BiBy, +p 0
F_|: 0 a,S and V = 0 0B Bp+ 1|

A
We then evaluate F' and V at DEF point Hy = (—, 0,0,0,0). So F and V
I

become

(1 —a)ppA
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and

-]

Finding the inverse of the matrix V, we have

1
yl=|H
0

Tl= O

Determining the next-generation matrix K = FV ~! which is obtained as

(I —a)ppA 0
12
K= af, A
0 2
I
The reproduction number is calculated as
Ro = p(K),
(I —-wp,A afp A
= max > , > .
H K

The reproduction number accounts for the effect caused by partially affected and
potentially affected individuals in a completely susceptible class.

1— A A
Here Ro,, = % and Ro, = aﬁ,; :
1

5 Stability Analysis
5.1 The Local Stability of the System

The equilibrium points of a system are said to be locally stable if by slight alteration
of the initial condition of the system the system remains in the neighborhood of that
equilibrium point [14].
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5.2 Local Stability of the DFE

217

Theorem 3 If the reproduction number Ry < 1 then demonetization free equilib-
rium point Hy is locally asymptotically stable but if Ry > 1 then Hy is unstable

[1].

Proof We consider the Jacobian matrix of Eq. (1) at Hy which gives

A
0 (I—)f,~ —p
"

J(Hp) =
0 0
0 0
0 0

A A
—n ~(1-a)p= —af,~ 0 0
I ju

The eigenvalues are obtained from the characteristic equations of | J (Hy) — IA| = 0.

A
0 ((1—a>ﬁp— —u) -
I

Therefore, the obtained eigenvalues are

A
0 0 (aﬁp— —u
0 0
0 0

A A
—p—=A —-(1-a)B3,— —af,— 0
H H
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)\] =— W,
A
)\2=—<H—(1—Oé)ﬁp—),
12

A
M=‘<“‘“%;>

>\4=_,LL7
)\5=—/J.

From \,, we have
A
Ay =— (u— a —Oé)ﬁp—> ,
I

A
=—u(1—ﬂ—awﬁﬁ)
= — u(1 = Ray,).

e (e on)

A
:‘”Q‘“@m>’

= — u(1 = Ro,).

From A3, we have

Considering
S*\ dS S*
At endemic equilibrium equation, A = (1 — a)3,M*S* 4+ a3,S* P* + uS*

. s
K <1 - %) % =K, (1 - ?> (1 = ) By M*S* + aBpS* P* + S — (1 — )3, MS — aB,SP — pS)

M*s*

=Ki(1-a)B, (M*S* - —MS+ MS*)

2

2
* Sﬂ
+ K108, (S*P*+S*P—SP— S >+K1M<2s*— < —s).
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Similarly,

M*\ dM M*
K> (1 - ) =K (1 - ) (1 —a)B,MS —rBiMBp — (1 — )i MB, — uM)

=Ky(1 = @)B,S(M — M*) + Kor 51 Bp(M* — M) + K2(1 — 1) 31 B, (M* — M)
T Ky(M* — M)p.

dpP P\
K3 (1 - ?> W = K3 <] - 7) (a,d,,SP - (1 7(1)[32PBP 7(1[32PBD - ;LP)

= K308,(SP — SP*) + K3(1 — )32 B, (P* — P) + K3q32 Bp(P* — P)

+ K3p(P* = P).
Furthermore,
B>\ dB B
K4 (1 — —’) —L =K, (1 — —”) (1 =rBMB, + (1 —q)3:PB, — uB))
B,/ dt B,
= K4(1 = 1)Bi(MB, — MB’) + K4(1 — )52 (PB, — PB?)
+ K4u(B; — B)p).
Finally,

B} dB B]
Ks(1—-2) =2 —ks(1— -2 ) (-B:MBp + g5 PBp — uBp)
Bp dt Bp

= Ks5(MBp — MBZ)) + Ksq(PBp — PB,) + KS,U(BZ) — Bp).

% = ((1 = )8, M*S* + a3, S* P¥) <1 - %) +(—a)B,5*M (1 - Si) +af,s* <1 - 3)

. s s M . M
+uS <2—§—§>+<1—a)/3p1ws<1— M>+rﬂlBDM <1—M*)

51B,M* | 1 M M* |1 M 1 P 1 P(1 P
+rB1Bp < *W)‘FH ( 7W)+O¢ﬂp( *?)‘l’( -9 < *F)

* * *

+qBpP* |1 P +uP* (1 P + (1 YO IMB, (1 B; + (1 )62, PB, | 1 By
/ _ _ — ) __r _ __Pr
qP26p P 1% P P1 P B, q)P2 P B,

*

B B B} B
+ uBj (1—B—f>+rﬁ1MBD (1— B§)+qﬁzPBD (1_ Bﬁ)ﬂ% (1_ Bf)
p D

K; =1fori =1,2,3,4,5. Since the arithmetic mean is greater than or equal to the
geometric mean, then the terms between the brackets are less or equal to zero.
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Table 2 Variable and parameter values of the model

Variables Initial condition Source
N() 1000 [15]

S(t) 618 Estimate
M(t) 130 Estimate
P(1) 120 Estimate
By(t) 70 Estimate
Bp(t) 62 Estimate
Parameters Value when Rg < 1 Value when Rg > 1
A 100 100

Bp 0.000006 0.0990
01 0.50005 0.0010
162 0.00003 0.0200
@ 0.88890 0.7005
q 0.00550 0.5900
r 0.00333 0.0090
0 0.09300 0.09300

dv
Therefore, ar = O holds provided (S, M, P, By, Bp) = (S*, M*, P*, B;, BY)).
The singleton set {(S, M, P,B,, Bp)=(S*, M*, P*, B, Bp)} which is

dv . . .
a subset of the set where — = 0 is the largest compact invariant set. There-

t
fore, by Lasalle’s invariance principle, it follows that as time ¢ approaches infinity,
(S, M, P, B,, Bp) — (§*, M*, P, B;, B7,). We therefore conclude that the
endemic equilibrium is globally asymptotically stable [8]. (]

Numerical simulations are carried out in order to appropriately analyze the behav-
ior of Eq. (1). The parameter values were estimated from the existing literature. Due
to unavailability of data, we considered using some estimated parameter values and
assumed variable values. The table of variable and parameter values is shown in
Table 2.

From Fig. 2a, it is observed that at Ry = 0.08 the susceptible population increases

. . A o
toward the carrying capacity of the system (— , as time increases. However, at

Ro = 0.08, the populations in Fig. 2b—e gradually decrease to zero over a period of
time. This confirms the demonetization equilibrium of the system. Also, it means that
the total number of individuals in the population before declaration of demonetization
are susceptible.

In Fig. 3a, one can observe that while the transmission rate is increasing, the
number of individuals moving into mildly affected class decreases gradually when
B, = 0.000006 and rapidly for other values of 3,,. This decreases and settles at zero
as time increases.
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Fig. 2 Simulation results of individual population when Ry < 1

From Fig. 4a, one observed that there is a little increase and decrease in the number
of individuals remaining in the susceptible class when demonetization occurred.
This explains the fact that once demonetization is declared, most of the susceptible
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Fig. 3 Simulation results of mildly and fully affected individuals at varying transmission rate (3,)
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Fig. 4 Simulation results of susceptible and mildly affected population at (Ro = 17.82)

individuals move into affected classes while the remaining few unaffected settle and
exchange their old cash for new currency in form of digital payment. Figure 4b shows
sharp increase and gradual decrease in the number of mildly affected population who
later settle at a higher number within the population as time increases. This means
that demonetization always force majority of the susceptible individuals to become
partially affected and only few could return into the susceptible class within a short
period. In Fig. 5a, there is arapid increase but a gradual decrease in the number of fully
affected individuals who settle within the population. This means that susceptible
individuals increasingly move into potentially affected class and remain in within
the population as time increases. In Fig. 5b, the number of partial bank depositors
decreases at first and then increases to a constant level. The sudden decrease could
be that affected individuals are receding from cash exchange policy on illegal, black
and counterfeit currency in order to evade tax and prosecution. While the increase
could be a decision to exchange illegal cash for new currency by affected individuals.
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Fig. 5 Simulation results of individual population when Ry > 1

In Fig. 5c, there is a rapid decrease of fully bank depositors who later settle at a lower
level. The rapid decrease could be a result of few affected individuals successfully
exchange old cash for new currency while other individuals’ cash exchange was
unsuccessful. Also, only the poor and hard income earners exchanged their old cash
fully for new currency.

From Fig. 6a, it is seen that as the rate of transmission increases, the number
of mildly affected individuals increases and decreases at equal pace and stabilizes
after 10 months. The interpretation of this graph is that the transmission rate has
little influence on the number of individuals who eventually become mildly affected.
From Fig. 6b, one noticed that the number of fully affected individuals increases in
accordance to transmission rate but maintains a stable state after 12 months. This
explains the fact that the transmission rate has a limited effect on the number of
mildly affected population.

From Fig. 7a, we noticed the significant effects of the basic reproduction number
(Ro) on the total population. When R is less than unity, the susceptible population
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Fig. 6 Simulation results of mildly and fully affected individuals at varying transmission rate (3,)
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Fig. 7 Simulation results of total population when Rg < 1 and Ry > 1

increase to equilibrium point — which is about 1200 while other demonetization-

I
affected populations converge to zero over a period of time. This confirms the demon-

etization free equilibrium point which is stable when Ry < 1. From Fig. 7b, one can
observe that when Ry > 1, majority of the susceptible population are mildly affected
and few are potentially affected. Due to demonetization drive, few of these affected
individuals deposited their old cash partially into the bank while the remaining fewer
deposited their old cash completely into the bank in exchange of new currency. This
confirms the demonetization existence equilibrium which is stable when Ry > 1.
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6 Conclusion

In this work, we consider the effects of demonetization on a population over a given
period of time. We formulated a mathematical model diagram which incorporates
five different classes of sub-populations. The basic reproduction number Ry was
calculated using the next-generation matrix method. Moreover, we determined the
demonetization free equilibrium (DFE) and demonetization existence equilibrium
(DEE). The stability analysis of the demonetization free equilibrium (DFE) had
been examined. Moreover, we carried out numerical simulations of the stable states
when Ry < 1 and Ry > 1. The simulation results of the model system (1) suggested
that demonetization had a lifetime effect on individuals particularly those on the
middle class suffering the most. Hence, for a successful demonetization to hold, the
government needs proper planning and implementation. Therefore, we implore the
government to enlighten individuals on the benefits of digital banking and online
transaction.
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An Inflationary Demand Scheme )
with Pareto Deterioration in Two e
Warehouses

Sunita and Ganesh Kumar

Abstract Inventory management is one of the biggest issues in any business feder-
ation. There are many instances when storage space is no longer adequate, and a new
warehouse is needed. This article deals with a two storage inventory model (one of
them is Own Warehouse (OW) and another is Rented Warehouse (RW)) with expo-
nentially time-varying demand considering partial backlogging. The capacity of own
warehouse is fixed (U units), to store more units than the limited range of OW, the
supplier has to rent another warehouse (RW) at higher holding cost. We study two
warehouse policies with linear holding cost and Pareto type decay in an inflationary
environment. We have worked out a model for determining costs and they are much
lower than previous estimates. Ultimately, sensitivity investigation has been executed
to demonstrate the effects of diverse parameters of the inventory system. We have
also calculated the economic order quantity Q with the help of MATLAB software.

Keywords Two storage inventory system - Pareto type decay rate - Inflation -
Partial backlogging

1 Introduction

The two warehouse inventory model was first brought to the world by Hartley [10].
Afterward several researchers attempted to make the field more transparent. In this
field, Pakkala and Achary [24], Sharma and Choudhary [34], and Gothi et al. [9]
analyzed two storage inventory systems for depreciating products. Zhou and Yang
[41] proposed a dual storage system for depreciating commodities without allowing
any shortages with stock-dependent demand. Yang [39] flourished a dual storage
inventory system for partially backlogged depreciating commodities with persistent
demand under an inflationary surrounding. Saxena et al. [30] established a dual
storage production inventory system for declining products with exponential demand
under trade credit period policy in an inflationary environment. Khanna et al. [13]
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established an inventory system for fully backlogged declining imprecise standard
artifacts with price-sensitive demand under trade credit period policy. Shaikh et al.
[33] explored a dual storage system for declining products with stock-dependent
demand and interval-value-based costs under an inflationary environment. Shah et al.
[32] established a pricing inventory system for declining artifacts with dynamic
demand without allowing any shortages. Aastha et al. [1] established a dual storage
system for completely backlogged depreciating imperfect quality commodities with
continuous demand. Agrawal et al. [3] proposed a dual storage system for partially
backlogged declining products with ramp-type demand. Kumar and Chanda [15]
established a dual storage system for depreciating products with demand taken as
innovation criterion based. Rong et al. [29] proposed a dual storage system for a
declining commodity with demand as selling price-dependent using fuzzy lead time.
They were the first who introduced fuzzy lead time.

Singh and Rathore [35] explored a dual storage system for depreciating commodi-
ties with linearly stock reliant demand using preservation tech